• 제목/요약/키워드: Rated voltage

검색결과 398건 처리시간 0.027초

순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터 (3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation)

  • 한석우;최규하
    • 전력전자학회논문지
    • /
    • 제5권6호
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

전원 전압 불평형시 계통연계형 인버터의 유효전력 리플 억제를 위한 듀얼 전류제어기 구현과 출력 전력의 실시간 제한 알고리즘 (Implementation of Dual Current Controller and Realtime Power Limiting Algorithm in Grid-connected Inverter during Unbalanced Voltage Conditions)

  • 송승호;김정재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.54-60
    • /
    • 2006
  • A power limiting algorithm is proposed for stable operation of grid-connected inverter in case of grid voltage unbalance considering the operation limit of inverter. During the voltage unbalance the control performance of Inverter. is degraded and the output power contains 120Hz ripple due to the negative sequence of voltage. In this paper, conventional dual sequence current controller is implemented to solve these problems using separated control of positive and negative sequence. Especially the maximum power limit which guarantees the maximum rated current of the inverter is automatically calculated as the instant grid voltage changes. As soon as the voltage recovers the proposed algorithm can return to the normal power control mode accomplishing low voltage ride through. Proposed algorithm is verifed using PSCAD/EMTDC simulations and tested experimentally at 4.4kW wind turbine simulator set-up.

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

독립계통 정유·화학플랜트의 안정도를 고려한 정격전압 결정에 관한 연구 (A Study on the Determination for Rated Voltage Considering the Stability in the Refinery and Chemical Plant by Isolated Power System)

  • 신호전;조만영;정인성;김진석;김재철
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.200-207
    • /
    • 2016
  • Nowadays, it is a global trend to build refinery or chemical plants with an isolated system in a place distant from the center of a city. In the refinery or chemical plants equipped with an isolated system, induced motors mostly take the load, and the scale of high-voltage electric motors reaches from several kW up to several MW. Therefore, it is needed to examine the effects of electric motors on the power system closely in the stages of planning and designing a plant to build a stable power system. This study is aimed to investigate how to decide rated voltage in consideration of stability which has not been considered in the stages of planning and designing so far in order to secure stability for the power system.

무가선 트램용 추진 전동기 설계 및 특성 비교 (Comparison of Traction Motor design and characteristics for battery driven hybrid tram)

  • 함상환;김광수;김미정;이형우;이주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

1MVA 고온 초전도 변압기 개념 설계 및 3차원 전자장 해석 (Conceptual Design and 3-D Electromagnetic Analysis of 1MVA HTS Transformer)

  • 박찬배;김우석;최경달;주형길;홍계원;한송엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권1호
    • /
    • pp.23-26
    • /
    • 2003
  • This paper presents conceptual design and 3-D electromagnetic analysis of IMVA transformer with BSCCO-2223 High Tc Superconducting (HTS) tapes. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV, and double pancake windings were adopted. High voltage and Low voltage sides were composed of several double pancake windings. Four HTS tapes were wound in parallel for the windings of low voltage side and were transposed in order to distribute the currents equally in each conductor The transformer core was designed as a shell type core made of laminated silicon steel plates and the core is separated with the windings by a cryostat with Fiberglass Reinforced Plastics(FRP). A sub-cooling system using L$N_2$ were designed to maintain the coolant temperature 65K. Finally perpendicular components of magnetic field applied to tapes were calculated 0.247 in the rated operation using 3-D analysis. A real 1MVA HTS transformer will be manufactured in near future based on the design parameters presented in this paper.

용량성배전변압기에 관한 연구 (A study on capacitive transformer)

  • 이승원
    • 전기의세계
    • /
    • 제18권2호
    • /
    • pp.7-14
    • /
    • 1969
  • From the first customer located right at the substation to the last customer at the end of the line, voltage must be held within close limits, so the voltage regulation is more important than the thermal limit. On a typical distribution system during the peak load period, the voltage drop may be serious enough to cause unsatisfactory operation of home appliances in the residential area, and present many problems to manufacturing industries, where the voltage must be maintained within close limits to insure smooth operation. Among all the factors contributing to voltage drop in the distribution system, the voltage drop in the distribution transformer may account for 30% of this figure. If we can eliminate this factor, the power companies can provide better quality electricity to more customers with the existing distribution facilities, thus saving on initial investment costs. Taking all these problems into consideration, the author undertook the design of a capacitive transformer which would give zero voltage drop at rated load and at 80% lagging power factor while incorporating overload features to withstand 400% overload for at least 100 seconds. The following are the results obtained through design, manufacture and test of an initial experimental transformer built with these specific purposes.

  • PDF

펄스파워용 고전압 고에너지밀도 커패시터 개발 (Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권5호
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

유도전동기 효율개선을 위한 교류전압제어기의 디지탈제어 (The Digital Control of AC Voltage Controller for Efficiency Improvement of Induction Motor)

  • 권동빈;이승철;정승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.392-396
    • /
    • 1994
  • A method which improves the efficiency of induction motor by controlling the input voltage by the three phase AC voltage controller is studied at the sides of theory and practice. At first, the principle of decreasing the input power and improving the efficiency by adjusting the amplitude of the input voltage according to the load rate is shown. Secondarily, the mathematical model of the three phase AC voltage controller-induction motor system is drived to translate the dynamic characteristics. The validity of the dynamic model is verified by simulation. The new driving method is also proposed, which regulates the rated speed's driving by the speed estimation from the firing angle and the magnitude reverse induced-voltage information. As a result, the digital control system is constructed. Expermintal results show desirable characteristics of proposed system.

  • PDF

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.