• Title/Summary/Keyword: Rated voltage

Search Result 398, Processing Time 0.027 seconds

A Study on the Design of the rated insulation voltage of 690V for the low-voltage switchgear and controlgear (저압기기 정격절연전압 690V 개발시 고려사항에 대한 연구)

  • Kim, Myoung-Seok;Kim, Jong-Yeok;Park, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.961-963
    • /
    • 2000
  • Most of the application standard of the low-voltage devices have applied one the IEC standard another the UL standard. European union applied the IEC60947-1 standard has not exceed 1000V a.c. or 1500V d.c.. Therefore. it is necessary to the low-voltage device has expended for rated operational voltage with our products. The export of European market shall be made for the CE-Marking in accordance with IEC60947-1 ( Low-voltage switchgear and controlgear). We shall be considered for the requirement with the IEC standard. In this time to study for power supply system at EU ( European union. At that time for design and development in order to the construction and test method among the study for the rated insulation voltage at less then 690V.

  • PDF

Characteristics of Insulation Failure in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 절연파괴 특성)

  • Kim, Hee-Dong;Kim, Kyeong-Yeol;Park, Deok-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.124-124
    • /
    • 2010
  • Diagnostic tests were performed on six high voltage motors. These tests included ac current, dissipation factor(tan6) and partial discharge(PD) magnitude. The rewind of motor stator insulation at rated voltage is assessed by the results of these tests. After completing the diagnostic tests, the stator windings of motors were subjected to gradually increasing ac voltage, until the insulation punctured. No. 1 and No.2 motors(4.16 kV) failed near rated voltage of 12.3 kV and 14.2 kV, respectively. The breakdown voltage of No.3 and No.4 motors(6.6 kV) was 17.6 kV and 17.8 kV, respectively. These motors are higher that expected for good quality coils in 6.6 kV class motors.

  • PDF

An Analysis of Optimal Link Voltage of VS-SVPWM for Current Harmonics Reduction

  • Lee Dong-Hee;Park Han-Woong;Ahn Jin-Woo;Kwon Young-Ahn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.343-346
    • /
    • 2002
  • In recent, complex SVPWM (Space Vector PWM) algorithm can be easily implemented by high performance microprocessor and DSP. Various SVPWM techniques are widely studied due to the advantages of low harmonic distortion and high use ratio of D.C. link voltage. Most of various studies for improving of VS-PWM inverter performance are concentrated about switching pattern and zero pulse pattern split algorithms. However, dc link voltage that is determined at rated load and speed conditions is not proper in the low speed and under rated load. In this paper, analysis of current ripple with digitally implemented SVPWM inverter is introduced according to link voltage. The optimal link voltage in the designed inverter system and load condition is provided in order to suppress output voltage error and current ripple. As remaining the effective voltage vector interval per sampling period sufficiently, additional voltage error and current ripple are suppressed. The proposed algorithm is verified through digital simulation and experimental results.

  • PDF

Analysis of the Principle and Operation Characteristics of an (Igc-Free ELB) Operated by an Active Component (유효성분 동작형 누전차단기(Igc Free ELB)의 원리 및 동작 특성 해석)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.456-461
    • /
    • 2010
  • This study compares the criteria of earth leakage breakers (ELB) and analyzes the characteristics of an Igc-free ELB operated by an active component which is not misoperated by capacitive current. Even for the same ELB, the earth leakage current flowing through the human body is estimated to be differ greatly depending on the power source, voltage, location and status of contact, contact time duration, etc. Earth leakage breakers are classified based on the rated voltage, rated sensing current, rated operating time etc. Mounting and demounting of the existing equipment can be performed easily since an $I_{gc}$-free ELB is manufactured with the same structure as a conventional ELB. The rated operating current of a conventional and an $I_{gc}$-free ELB is 30mA, the sensing current is 25mA and the rated non-operating current is 15mA. In the analysis of non-operating current characteristics, the rated non-operating current of 15mA was satisfied up to a 20mA charging current in the conventional ELB, but does not satisfy the rated non-operating current as it operates when the resistive leakage current is lower than 15mA for a charging current exceeding 20mA. Also, the ELB is misoperated without a resistive leakage current when the charging current exceeded 25mA. However, the newly developed $I_{gc}$-free ELB satisfied the rated non-operating current even when the charging current was 60mA. Also, in comparison to the interrupting characteristics, it was confirmed that the charging current satisfying the rated non-operating current of the $I_{gc}$-free ELB was three times higher than that of the conventional ELB.

The study for function and operation of the excitation equipment for short circuit generator (단락발전기 용 여자장치의 조작과 기능에 대한 고찰)

  • Kim, Sun-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.735-736
    • /
    • 2008
  • There are many equipments for the Short Circuit Test, for example Short Circuit Generator, Induction Motor, Sequence Timer, CLR, Back Up Breaker, Making Switch and Excitation Equipment etc. Gradually an allowable tolerance of the short circuit test voltage is become smaller by the standards for short circuit test. The excitation equipment of short circuit generator is very important for test voltage is adjusted by the excitation equipment. Especially the excitation equipment must be possessed character of exactitude, durability and inalterability because some times around 10,000 times opening and closing short circuit test is requested by clint, which must be done within one minute. The purpose of this study for function and operation of the excitation equipment which rated DC voltage is 1,000V, rated DC current is 300A, rated out put is 30kW and type is YNEX 97S-441/609, is to help operation of short circuit generator.

  • PDF

Power Analysis & Rated Power Control Method of DFIG for Wind Power Generating (풍력발전용 DFIG의 출력 해석과 정격출력 제어)

  • Lee, Jean-Ho;Lee, Woo-Suk;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.111-114
    • /
    • 1999
  • This paper deals with the rated output power using grid-connected Doubly-Fed Induction Generator(DFIG) in the supersynchronous speed regions. The rated output power is controlled by both magnitude and frequency of the voltage fed to the rotor. And this rotor voltage is controlled by control of inverter switching frequency and fire angle. A DFIG generating characteristic is analyzed by simulation of steady-state algebraic equation of equivalent circuit using numerical analysis. And it is compared with results of experiment. Consequently, This paper presented to control method for rated output power of DFIG in variable wind speed.

  • PDF

Characteristics of Dissipation Factor in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 유전정접 특성)

  • Kim, Hee-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.93-94
    • /
    • 2008
  • Diagnostic tests were performed in three high voltage motors. These tests included insulation resistance, polarization index, ac current, dissipation factor($tan{\delta}$) and partial discharge magnitude. The rewind of motor stator insulation at rated voltage is assessed by the results of these tests. After completing the diagnostic tests, the stator windings of motors were subjected to gradually increasing ac voltage, until the insulation punctured. NO.1 and No.2 motors failed near rated voltage of 14.0 kV, respectively. These motors are lower that expected for good quality coils in 6.6 kV class motors. The breakdown voltage of No.3 motor was 15.0 kV.

  • PDF

A Study on the Performance and Safety Evaluation for Residential Fuel Cell System under the Abnormal Condition (이상조건하에서 가정용 연료전지 시스템의 성능 및 안전성 평가에 관한 연구)

  • Lee, Jung-Woon;Seo, Won-Seok;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.10-13
    • /
    • 2008
  • Fuel cell systems have witnessed remarkable development in recent years as they offer a clean and efficient alternative for power generation. Testing was conducted to determine the safety performance of a residential fuel cell system when subjected to abnormal operation condition, especially for voltage sag and fuel cut. In case of voltage sag to 198V, its arriving time at rated power had shown a slight lag but there wasn't any noticeable change when operating it between rated voltage(220V) and 10% voltage sag(198V). In case of fuel cut, it also showed stable shut-down characteristics. The test results are being used to develop a new safety evaluation for residential fuel cell system.

  • PDF

A Study on Arc Conductance of Puffer Type SF6 GCB at Current Zero Period (전류영점 영역에서 파퍼식 SF6 가스차단기의 아크 컨덕턴스에 관한 연구)

  • Chong, Jin-Kyo;Song, Ki-Dong;Lee, Woo-Young;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.328-332
    • /
    • 2010
  • The SLF(Short Line Fault) breaking capability test for high voltage class $SF_6$ GCB(Gas Circuit Breaker) was conducted. Simplified LC resonant circuit test facility was used for SLF breaking test. During test, Test current was measured by Rogwski coil and arc voltage was measured by voltage divider. Arc conductance was calculated by using these test results before 200ns at current zero. Critical arc conductance value at rated voltage 145kV class is about 2.3mS regardless of breaking current magnitude and arc conductance value at rated voltage 170kV class is about 2.6mS.

Assessment of Insulation Deterioration in Stator Windings of High Voltage Motor (고압전동기 고정자 권선의 절연열화 평가)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • To assess the insulation deterioration of stator windings, diagnostic and AC breakdown tests were performed on the eleven high voltage (HV) motors rated at 6kV. After completing the diagnostic tests, the AC overvoltage test was performed by gradually increasing the voltage applied to the stator windings until electrical insulation failure occurred, to obtain the breakdown voltage. Stator winding of motors 1, 3, and 8 failed at above rated voltage at 14 kV, 13.8kV, and 16.4kV, respectively. The breakdown voltage of three motors was higher than expected for good quality windings in 6kV motors. Based on deterioration evaluation criteria, the stator winding insulation of eleven HV motors are confirmed to be in good condition. The turning point of the current, $P_{i2}$, in the AC current vs. voltage characteristics occurred between 5kV and 6kV, and the breakdown voltage was low between 13.8kV and 16.4kV. There was a strong correlation between the breakdown voltage and various electrical characteristics in diagnostic tests including Pi2.