• Title/Summary/Keyword: Rated power frequency

Search Result 109, Processing Time 0.027 seconds

A Study on the Effect of Low Pass Filter and Drive Train Damper for the NREL 5MW Wind Turbine Control (NREL 5MW 풍력터빈 제어용 저주파 통과 필터와 드라이브 트레인 댐퍼의 효과 고찰)

  • Lim, Chae-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.443-451
    • /
    • 2021
  • It is essential to examine and analyze the power output and load responses together using real-world turbulent wind speeds. In this paper, the power controller and the drive train damper are simultaneously considered using the NREL 5MW wind turbine model, and the damage equivalent load(DEL) of the low speed shaft torque and power output responses according to the natural frequency of the second order low pass filter are simultaneously investigated. Numerical testing is carried out above rated wind speed using commercially available Bladed software. From the viewpoints of DEL reduction of the drive train shaft torque and power output responses, it is shown that the natural frequency of the low pass filter is appropriately about 6 to 10rad/s. And the reduction ratio of the DEL of the low-speed shaft torque decreases as the wind speed becomes higher, and it is confirmed that the reduction ratio is limited to about 20% at high wind speeds.

Pulse Width and Pulse Frequency Modulated Soft Commutation Inverter Type AC-DC Power Converter with Lowered Utility 200V AC Grid Side Harmonic Current Components

  • Matsushige T.;Ishitobi M.;Nakaoka M.;Bessyo D.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.484-488
    • /
    • 2001
  • The grid voltage of commercial utility power source hi Japan and USA is 100rms, but in China and European countries, it is 200rms. In recent years, In Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100Vrms utility AC power applications and systems, an active voltage clamped quasi-resonant Inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency Inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching Inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant Inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull type Inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components In the utility AC power side of the AC-DC power converter operating at ZVS­PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  • PDF

The Stack Design Considering The Reactive Power Supply of Grid-Connected Inverter (계통 연계형 인버터의 무효전력 공급을 고려한 Stack 설계)

  • Koh, Kwang-Soo;Oh, Pil-Kyoung;Kim, Hee-Jung;Kim, Young-Min
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.453-454
    • /
    • 2016
  • The ESS(Energy Storage System) connected with distributed generation is drawing attention due to improving the quality load leveling, peak shaving for enhancing reliability of the power grid. The grid-connected inverter makes frequency adjustment to the active power's charge discharge according to the load variation. In addition, the inverter is possible to act as a reactive power compensation device to eliminate harmonic operates as power factor change inhibiting, anti-transient voltage fluctuation, active filter. In this paper, we propose a design method of igbt stack considering the reactive power supply capacity to improve the quality and reliability of the inverter. Moreover, the grid-connected inverter considering the four-quadrant rated operation designed stack and verified the feasibility of the design through a thermal analysis.

  • PDF

Versatile Shunt Hybrid Power Filter to Simultaneously Compensate Harmonic Currents and Reactive Power

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1311-1318
    • /
    • 2015
  • This paper introduces a novel topology and an effective control strategy for a shunt hybrid power filter (SHPF) to simultaneously compensate harmonic currents and reactive power. The proposed SHPF topology is composed of an LC passive filter tuned to the 7th harmonic frequency and a small-rated active filter connected in parallel with the inductor Lpf of the LC passive filter. Together with the SHPF topology, we also propose a control strategy, which consists of a proportional-integral (PI) controller for DC-link voltage regulation and a PI plus repetitive current controller, in order to compensate both the harmonic current and the reactive power without the need for additional hardware. Thanks to the effectiveness of the proposed control scheme, the supply current is sufficiently compensated to be sinusoidal and in-phase with the supply voltage, regardless of the distorted and phase lagging of the load current. The effectiveness of the proposed SHPF topology and control strategy is verified by simulated and experimental results.

Analysis of the Internal Electrical Characteristics of Electronic Power Transformers

  • Yi, Yang;Mao, Cheng-Xiong;Wang, Dan;Lu, Ji-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.746-756
    • /
    • 2013
  • The modularized subunit of an electronic power transformer (EPT) is a series connection of two H-bridge voltage-source converters and a DC-DC converter with a high-frequency isolation transformer (HFIT). On the basis of cascading and paralleling the modularized subunits, EPT can be used in high-voltage and large-current applications in the power system. This paper discusses the steady state analysis of the modularized subunit of EPT. Theoretical analysis considers the influences of the two H-bridge voltage-source converters on the two sides of the DC-DC converter. We deduce the formulas of the theoretical calculation on the internal electrical characteristics of EPT (e.g., the voltages of the DC-bus capacitor and the primary side peak current of the HFIT). This paper provides guidance on the design and selection of EPT key elements (e.g., the DC-bus capacitors and HFIT). Experimental results are obtained from a single subunit of a laboratory model rated at 962 V, 15 kVA. All calculations, simulations, and experiments confirm the theoretical analysis of the subunit of EPT.

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.

Single-Stage Single-Phase Integrated ZCS Quasi-Resonant Power Factor Preregulator Based on Forward Topology (단일 전력단 단상 공진형 영전류 스위칭 역률 개선 회로)

  • 구관본;이준영;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.639-642
    • /
    • 1999
  • An integrated zero current switching(ZCS) quasi-resonant converter(QRC) for power factor correction and high efficiency with single switch is proposed in this thesis. Boost integrated circuit operating discontinuous conduction mode(DCM) and QRC are used for power factor correction and reducing switching loss, respectively. A prototype converter has been designed and experimented. At rated condition, the THD in the input current waveform of this prototype has approximately 18%. The efficiency is obtained about 70%, the power factor is about 0.985 as well. Therefore, the proposed converter is suitable for a low power level converter with operating switching frequency above several hundred KHz.

  • PDF

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Evaluation of the Device Temperature and Optical Characteristics in High Power White LED Lamp by Driving Condition (고출력 백색 LED 램프의 구동조건에 따른 온도 및 광 특성 평가)

  • Yun, Jang-Hee;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.33-38
    • /
    • 2011
  • In this paper, the effect of pulse current and generated heat on characteristics of the LED is measured and evaluated. For experiments, the LED driving circuit and digital logic which determines period and duty ratio of lighting are designed. At rated current, the temperature and optical characteristics of the LED with change in duty ratio and period are compared, and those of the LED with change in duty ratio and existence of cooling fan are also compared at constant average current. As a result, frequency does not affect device temperature and optical characteristic of the LED but duty ratio does. Also, the cooling fan is less effective on those of the LED at rated current.

Development of 140kV, 20mA Rated High Voltage Pulsed Power System for Pilot EP (140kV, 20mA급 Pilot 집진기용 고압 펄스 전원장치 개발)

  • Kim, Won-Ho;Kang, Iou-Ri;Lee, Kwang-Hak;Kim, Jong-Soo;Rim, Geun-Hie;Kim, Chul-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.73-78
    • /
    • 2001
  • With the increasing demands for clean environment, development of air cleaning systems has been received increasing attention. One of the key technologies in the electrostatic precipitator(EP) is high voltage pulsed power supply, which affects the performance of the overall system. In this study, a high voltage microsecond pulse power supply for the pilot EP is developed. The power supply has a dc source and a pulsed one. The ratings of the dc and the pulse source are 60kV and 70kV respectively. The width of pulse voltage is 140us and the maximum pulse repetition frequency is 200Hz.

  • PDF