• Title/Summary/Keyword: Rate-controlling Mechanism

Search Result 96, Processing Time 0.031 seconds

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1329-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

  • PDF

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1336-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

Mechanisms of Time-dependent Plastic Deformation of Eutectoid and Hypereutectoid Steels at Low T/Tm Temperatures (저 T/Tm 온도에서 공석강 및 과공석강의 시간의존성 소성변형 기구)

  • Choi, B.H.;Chung, K.C.;Park, K.T.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.359-365
    • /
    • 2016
  • The rate-controlling mechanisms for time-dependent plastic deformation of eutectoid and hyper-eutectoid pearlitic steels at low $T/T_m$ temperatures were explored. The strain rate - stress data obtained from a series of constant load tensile tests at $0.25{\sim}0.30T/T_m$ were applied to the power law, the lattice friction controlled plasticity, and the obstacle controlled plasticity. Of these models, the obstacle controlled plasticity was found to best-describe the rate-controlling mechanism for time-dependent plastic deformation of two steels at low $T/T_m$ temperatures in terms of the activation energy for overcoming the obstacles against dislocation glide in ferrite. The deformed microstructures revealed the dislocation forests of a high density as the main obstacles. In addition, the obstacle controlled plasticity well-explained the effects of cementite on the $0^{\circ}K$ flow stress of two steels.

Controlled Release of Drugs from Silicone Rubber Matrices-Effects of Physical Properties of Drugs and Release Controlling Agents on Drug Release Mechanisms- (실리콘 마트릭스로부터의 약물조절 방출-약물 및 방출조절제의 물성이 방출기전에 미치는 영향-)

  • Jeon, So-Young;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.4
    • /
    • pp.237-245
    • /
    • 1991
  • Matrix type silicone rubber devices were designed for long-term implantable drug delivery system. Release controlling agents (RCA), i.e., polypropylene glycol, polyethylene glycol, were employed to control drug release from the devices. The release rate of drug from RCA dispersed silicone matrices was mainly dependent on hydrophilicity-hydrophobicity of drug and RCA. In the case of hydrophilic drug, the release from the RCA dispersed matrix was regulated by swelling kinetics. Especially when the relatively hydrophobic polypropylene glycol was used, swelling control mechanism induced zero-order release kinetics. Whereas, the release of hydrophobic drug was resulted from partition mechanism. The effect of RCA was to increase drug diffusivity.

  • PDF

A Study on the Development and the Monitoring of Micro Hole Drilling Machine (미소경 드릴링 머신의 시작과 감시에 관한 연구)

  • 백인환;정우섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.62-68
    • /
    • 1994
  • Recently, the trends toward reduction in size and weight of industrial products increased the application of micro hole for manufacturing gadgets of high precision and gave rise to a great deal of interest for micro hole drilling M/C. Quite a few research work is performed on micro drilling on domestic basis compared with the tendency of analyzing cutting mechanism, adaptive control, monitoring of generally available drills of diameter greater than 1mm. This study adresses the design, manufacturing and controlling a micro hole drilling M/C with the overload detection instrument and the step feed mechanism. Controlling and monitoring of the drilling process are acomplished on PC basis for more user interfaces and effectiveness. The test machine of the results of this research shows a good foundation for extending further micro hole machining technique.

  • PDF

Controlled Release of Drugs from Reservoir Type Devices Coated with Porous Polyurethane Membranes (다공성 폴리우레탄으로 피막된 Reservoir형 약물 조절 방출 시스템)

  • Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.4
    • /
    • pp.207-211
    • /
    • 1993
  • Reservoir type devices were designed for long-term implantable drug delivery system. The reservoir type device was prepared with the polymethacrylic acid gel coated with polyurethane membrane. Release controlling agent (RCA) were employed to control drug release from devices via generation of micropores in the membranes. The polyurethane membrane functioned as a rate controlling barrier. The drug release pattern of hydrogel demonstrated zero order kinetics. The release rate of drugs could be regulated by varying hydrophobicity/hydrophilicity and content of the RCA, as well as the thickness of the polyurethane membrane. The release of drugs from this system was governed by pore mechanism via simple diffusion and osmotic pressure.

  • PDF

An Investigation of the Extinction and Ignition Characteristics Using a Flame-Controlling Method (화염온도 제어법을 이용한 확산화염의 소화 및 점화특성 검토)

  • Oh, Chang-Bo;Lee, Eui-Ju;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Extinction and ignition characteristics of $CH_4$-air counterflow diffusion flame were numerically investigated using a Flame-Controlling Method(FCM). A skeletal reaction mechanism, which adopts 17 species and 58 reactions, was used in the simulation. The extinction and ignition conditions of the $CH_4$-air diffusion flames were investigated with varying the global strain rate. Upper and middle branches of S-curve for the peak temperature in the inverse of the global strain rate space were obtained with the FCM. The structures of diffusion flames in the upper and middle branches of S-curve were compared. It was found that the global strain rate was not correlated with the local strain rate well in the low global strain rate region. It is expected that the FCM is very useful to obtaining the extinction and ignition condition of diffusion flame, such as fires.

Performance Analysis of ATM Switch Using Dynamic Priority Control Mechanisms (동적 우선순위 제어방식을 사용한 ATM 스위치의 성능분석)

  • 박원기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.855-869
    • /
    • 1997
  • In this paper, we proposed two kids of dynamic priority control mechanisms controlling the cell service ratio in order to improve the QOS(Quality of Service). We also analyse theoretically the characteristics of cell loss probability and mean cell delay time by applying the proposed priority control mechanisms to ATM switch with output buffer. The proposed priority control mechanisms have the same principles of storing cells into buffer but the different principles of serving cells from buffer. The one is the control mechanism controlling the cell service ratio according to the relative cell occupancy ratio of buffer, the other is the control mechanism controlling the cell service ratio according to both the relative cell occupancy ratio of buffer and the average arrival rate. The two service classes of our concern are the delay sensitive class and the loss sensitive class. The analytical results show that the proposed control mechanisms are able to improve the QOS, the characteristics of cell loss probability and mean cell delay time, by selecting properly the relative cell occupancy ratio of buffer and the average arrival rate. conventional DLB algorithm does not support synchronous cells, but the proposed algorithm gives higher priority to synchronous cells. To reduce synchronous cell loss rate, the synchronous cell detector is used in the proposed algorithm. Synchronous cell detector detects synchronous cells, and passes them cells to the 2nd Leaky-Bucket. So it is similar to give higher priority to synchronous cells. In this paper, the proposed algorithm used audio/video traffic modeled by On/Off and Two-state MMPP, and simulated by SLAM II package. As simulation results, the proposed algorithm gets lower synchronous cell loss rate than the conventional DLB algorithms. The improved DLB algorithm for multimedia synchronization can be extended to any other cells which require higher priority.

  • PDF

Kinetics of the Formation of Metalloporphyrins and the Catalytic Effect of Lead Ions and Hydrogen Ions

  • Qi, Yong;Pan, Ji Gang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3313-3318
    • /
    • 2014
  • The reaction mechanism of Lead ions catalyzing complexation reactions between TIPP and metal ions was investigated by researching the kinetics of the formation of metalloporphyrins by UV/Vis-spectra, and verified by exploring the formation of metalloporphyrins catalyzed by acetic acid. Kinetics studies suggested that the fluctuations of reaction rate indicated the formation of metalloporphyrin was step-wise, including the pre-equilibrium step (the coordination of the pyrrolenine nitrogens to $Mn^+$) and the rate-controlling step (the deprotonation of the pyrrole proton). In the pre-equalization step, a sitting-atop (SAT) structure formed first with the complexation between larger radius of $Pb^{2+}$ and TIPP, changed the activation, then $Pb^{2+}$ left with the smaller radius of metal ions attacking from the back of the porphyrin ring center. In the rate-controlling step, two pyrrole protons dissociated to restore a stable structure. This was verified by adding acetic acid at different reaction times.

Thermal Debinding Behavior of PIM Components Produced with Different Powder Sizes and Shapes

  • Shu, Guo-Jiun;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.219-220
    • /
    • 2006
  • To understand the effect of powder characteristics on the thermal debinding behavior, PIM parts produced with powders with different particle sizes and particle shapes were examined to determine their weight losses during thermal debinding. The results show that the average diameter of the pore channel in the compact increased when the temperature increased and when coarse powders were used. However, the weight loss rates did not increase proportionally with the pore size. This suggests that the different powders that are frequently used in PIM parts do not affect the thermal debinding rate significantly. This is because the pore size is much larger than the mean free path of the decomposed gas molecules. Thus, the diffusion rates of the gases are not rate-controlling in thermal debinding. The controlling mechanism of the thermal debinding rate is the decomposition of the backbone binder in the PIM parts.

  • PDF