• 제목/요약/키워드: Rate Sensitivity

검색결과 2,148건 처리시간 0.026초

A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope (단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구)

  • Park, Ji Won;Din, Hussamud;Lee, Byeung Leul
    • Journal of the Semiconductor & Display Technology
    • /
    • 제21권4호
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

Effectiveness of Sensitivity Analysis for Parameter Selection in CLIMEX Modeling of Metcalfa pruinosa Distribution

  • Byeon, Dae-hyeon;Jung, Sunghoon;Mo, Changyeun;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.410-419
    • /
    • 2018
  • Purpose: CLIMEX, a species distribution modeling tool, includes various types of parameters representing climatic conditions; the estimation of these parameters directly determines the model accuracy. In this study, we investigated the sensitivity of parameters for the climatic suitability calculated by CLIMEX for Metcalfa pruinosa in South Korea. Methods: We first changed 12 parameters and identified the three significant parameters that considerably affected the CLIMEX simulation response. Results: The result indicated that the simulation was highly sensitive to changes in lower optimal temperatures, lower soil moisture thresholds, and cold stress accumulation rate based on the sensitivity index, suggesting that these were the fundamental parameters to be used for fitting the simulation into the actual distribution. Conclusion: Sensitivity analysis is effective for estimating parameter values, and selecting the most important parameters for improving model accuracy.

Effect of Strain Rate and Material Hardness on Residual Stress in Multiple Impact Shot Peening (다중충돌 쇼트피닝에서 변형률 속도와 소재 경도가 잔류응력에 미치는 영향에 관한 연구)

  • Kim, Tae-Woo;Yang, Zhao-Rui;Na, Doo-Hyun;Lee, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권11호
    • /
    • pp.1369-1375
    • /
    • 2011
  • Shot ball impacts to materials cause residual compressive stress on their surfaces. Improving the fatigue strength of a material that has this residual compress stress is the purpose of the shot peening process. A numerical study was performed to evaluate the effect of the strain rate sensitivity and hardness of the shot ball on the residual compressive stress. We calculated the residual compressive stress due to multiple impact shot peening using ABAQUS 6.9-1. AISI 4340 steel was the material used in this study. We compared the effects of high strain rate sensitivities and low strain rate sensitivities and found that when the material's sensitivity to the strain rate increased, the residual compressive stress decreased. In addition, the residual compressive stress of low-hardness material is higher than that of high-hardness material.

Sensitivity of Lavender to Proton, Electron, and Gamma Radiation

  • Chen, Wensheng;Li, Hui;Shi, Lei;Bai, Hong Tong
    • Horticultural Science & Technology
    • /
    • 제34권1호
    • /
    • pp.122-133
    • /
    • 2016
  • While ion beams are widely used in plant breeding, little is known about the sensitivity of Lavandula angustifolia (lavender) to ionizing radiation. To compare the biological effects of different types of ionizing radiation on the germination and survival rates of lavender, we exposed lavender seeds to gamma rays, 3 MeV electron beams, and 1.89 MeV proton ion beams. We observed that the seed germination rate decreased with increasing dosages of all three types of ionizing radiation. The malformation rate of lavender seedlings exposed to electron beams and gamma rays increased with increasing radiation dosage. By contrast, the effect of the accelerated proton beams on the malformation rate was negatively correlated with the dosage used. The survival rate of lavender seedlings exposed to the three types of ionizing radiation decreased in a dose-dependent manner. In addition, the survival rate of seedlings irradiated with proton and electron beams decreased more slowly than did that of seedlings irradiated with gamma rays. The half-lethal dose of gamma rays, electron beams, and proton beams was determined to be 48.1 Gy, 134.3 Gy, and 277.8 Gy, respectively, and the most suitable proton-ion energy for lavender seeds in terms of penetration depth was determined to be 5 MeV. These findings provide valuable information for the breeding of lavender by radiation mutation.

A Study on the Estimation Model of Liquid Evaporation Rate for Classification of Flammable Liquid Explosion Hazardous Area (인화성액체의 폭발위험장소 설정을 위한 증발율 추정 모델 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • 제33권4호
    • /
    • pp.21-29
    • /
    • 2018
  • In many companies handling flammable liquids, explosion-proof electrical equipment have been installed according to the Korean Industrial Standards (KS C IEC 60079-10-1). In these standards, hazardous area for explosive gas atmospheres has to be classified by the evaluation of the evaporation rate of flammable liquid leakage. The evaporation rate is an important factor to determine the zones classification and hazardous area distance. However, there is no systematic method or rule for the estimation of evaporation rate in these standards and the first principle equations of a evaporation rate are very difficult. Thus, it is really hard for industrial workplaces to employ these equations. Thus, this problem can trigger inaccurate results for evaluating evaporation range. In this study, empirical models for estimating an evaporation rate of flammable liquid have been developed to tackle this problem. Throughout the sensitivity analysis of the first principle equations, it can be found that main factors for the evaporation rate are wind speed and temperature and empirical models have to be nonlinear. Polynomial regression is employed to build empirical models. Methanol, benzene, para-xylene and toluene are selected as case studies to verify the accuracy of empirical models.

Development of Replacement Models under Minimal Repair with Wavelet Failure Rate Functions (웨이브릿 고장률 함수를 갖는 최소수리 교체모형 개발)

  • 최성운
    • Journal of the Korea Safety Management & Science
    • /
    • 제3권4호
    • /
    • pp.91-101
    • /
    • 2001
  • This paper is to develop replacement models under minimal repair with exponential polynomial wavelet failure rate function. Wavelets have good time-frequency localization, fast algorithms and parsimonious representation. Also this study is presented along with numerical examples using sensitivity analysis for exponential polynomial trigonometric failure rate function.

  • PDF

The Selection and Sensitivity to Environmental Mutagen of Silkworm Reared Artificial Diet in a Screening System Using Specific Locus Mutation of the Silkworm, Bombyx mori (누에의 가시 돌연변이형질을 이용한 인공사료육 누에의 적품종 및 변이원 감수성 조사)

  • Yoon, Hyung-Joo;Kim, Sam-Eun;Kim, Jong-Gill;Choi, Ji-Young;An, Mi-Yong
    • Journal of Sericultural and Entomological Science
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2007
  • We investigated the selection and sensitivity to environmental mutagen of silkworm reared artificial diet to develop all-year-round operation system using a specific locus mutation of Bombyx mori. In the system, mutagenicity could be detected by the egg colour manifested by the pe and/or re genes, which is a kind of recessive visible mutation of the insect. Among, hi, Backokjam, C5, and N12, varieties of silkworm, AT was higher than other varieties in eclosion rate of female, and C5 and N12 were higher in fertility of male. Bakokjam was higher in eclosion rate of female, rate of moth to lay eggs normally in female and male, no. of eggs layed in female and fertility of female. As above results, Bakokjam was finally selected as the most fitness one among varieties of silkworm reared artificial diet. But the sensitivity to mutagen was lower than other varieties. In the sensitivity to mutagen, AT was the most sensitivity to mutagen in tested varieties of silkworm. To use AT variety in this system, AT was improved major characteristics, eclosion rate, fertility, rate of moth to lay eggs normally, and so on, by crossing of other varieties including Bakokjam.

The Energy Release Rate of the Two Dimensional Cracked Body Under Thermal Stresses, Body Forces and Crack-Face Tractions (열응력, 내력 및 균열 경계하중을 고려한 2차원 균열문제의 에너지방출율)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권9호
    • /
    • pp.2172-2180
    • /
    • 1993
  • Under general loadings, including body forces, crack-face tractions and thermal loading, the energy release rate equation for a two-dimensional cracked body is presented. Defining the virtual crack extension as the variation of the geometry, the equation is directly derived by a shape design sensitivity of the potential energy. Although the form of the derived energy release rate equation is different from other researchers's results, the three example show that the former is exactly the same as the latter. However, the final integral equation do not involve the derivative of the displacement on the crack surface and crack tip region, thereby improving the numerical accuracy in the computation of the energy relase rate. Moreover, as it was derived from the governing equation including non-linear elasticity without special assumptions, the energy release rate of a elasto-plastic fracture can be obtained and any numerical stress analysis method can be applied.

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • 제14권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF