• Title/Summary/Keyword: Rate Sensitive Model

Search Result 220, Processing Time 0.03 seconds

Evaluation of Indoor Air Quality Improvement by Formaldehyde Emission Rate in School Indoor Environment Using Mass Balance (물질수지를 이용한 학교 실내환경의 포름알데히드(HCHO) 배출량 산정에 의한 실내공기질 개선 평가)

  • Yang, Won-Ho;Son, Bu-Soon;Kim, Dae-Won;Kim, Young-Hee;Byeon, Jae-Cheol;Jung, Soon-won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • Schools have significant and serious indoor environmental health problem, of which indoor air quality (IAQ) in school building may affect the health of the students and indirectly affect learning performance. Schools are of special concern when regarding indoor exposure to air pollutants, because students are particularly sensitive to pollutants and spend a significant amount of time in that environment. Therefore researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide(TiO2) coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde emission rate in school indoor environments by far-Infrared ray coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor air quality.

Precise Flow Stress Analysis for the Occurrence of Dynamic Ferritic Transformation and Dynamic Recrystallization of Austenite in Low Carbon Steel (고온 변형 곡선을 이용한 동적 재결정 해석과 동적 상변태의 조기 예측)

  • Park, Nokeun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.779-786
    • /
    • 2018
  • There have been previous attempts to observe the occurrence of dynamic ferritic transformation at temperatures even above $Ae_3$ in a low-carbon steel, and not only in steels, but recently also in titanium alloys. In this study, a new approach is proposed that involves treating true stress-true strain curves in uniaxial compression tests at various temperatures, and different strain rates in 0.1C-6Ni steel, which is a model alloy used to decelerate the kinetics of ferrite transformation from austenite. The initial flow stress up to peak stress was used to analyze the change in dynamic softening phenomena, such as dynamic recovery, dynamic recrystallization, and dynamic transformation. It is worth mentioning that for predicting the occurrence of dynamic transformation, flow stress before reaching peak stress is much more sensitive to the change in the dynamic softening rate due to dynamic transformation, compared to peak stress. It was found that the occurrence of dynamic ferritic transformation could be successfully obtained even at temperatures above $Ae_3$ once the deformation condition was satisfied. This deformation condition is a function of both the strain rate and the deformation temperature, which can be described as the Zener - Hollomon parameter. In addition, the driving force of dynamic ferritic transformation might be much less than that of the dynamic recrystallization of austenite at a given deformation condition. By applying this technique, it is possible to predict the occurrence of dynamic transformation more sensitively compared with the previous analysis method using peak stress during deformation.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

Simulation of Quality Changes and Prediction of Shelf-life in Dried Laver Packaged with Plastic Films (플라스틱 필름 포장 김의 품질 변화 simulation과 shelf-life 예측)

  • Koh, Ha-Young;Park, Hyung-Woo;Kang, Tong-Sam;Kwon, Yong-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.463-470
    • /
    • 1987
  • In order to develop a rapid predicting method of the shelf-life of moisture sensitive foods and establish their proper packaging methods, the qualify changes and shelf-life of dired laver as a model food were studied by the computer simulation. A mathematical model of the relationship between the rate constants of chlorophyll a and water activity was established at $10^{\circ}C,\;25^{\circ}C$ and $40^{\circ}C$. Computer simulation to predict water activity and chlorophyll a was developed by considering the simultaneous influence of storage conditions such as water content of products, storage temperature and relative humidity, packaging materials. Simulated quality changes of dried laver was in good agreement with the experiment data. Chlorophyll a and sensory score decreased as the water activity increased. And correlation coefficient between the sensory scores and the contents of chlorophyll a was very high as 0.991. The critical water activity by sensory evaluation was around 0.55. The shelf-life of dried laver packaged with plastic films could be predicted from the above results in various storage conditions.

  • PDF

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

A Study on the Determinants of Apartment Price during COVID-19 Pandemic Using Dynamic Panel Model: Focusing on the Large-scale Apartment Complex of More than 3,000 Households in Seoul (동적패널모형을 활용한 코로나19 팬데믹 기간 아파트가격 결정요인 연구: 서울특별시 3000세대 이상 대규모 아파트 단지를 중심으로)

  • Jung-A, Park;Jong-Jin, Kim
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • This study investigated price factors for large apartment complexes in Seoul during the COVID-19 pandemic and compared Gangnam and non-Gangnam areas, which have been recognized as heterogeneous markets. We find that the change in apartment prices in large-scale complexes did not significantly affect the individual characteristics of apartments, unlike previous studies, but was affected by macroeconomic variables such as interest rates and money. On the other hand, considering the units of the interest rate and total monetary volume variables, the effects of two variables on the apartment sales price is significantly high. In addition, the Gangnam area model analysis shows that apartment prices are greatly affected by interest rates and currency volume, and, the non-Gangnam area model analysis shows that apartment prices are greatly affected by interest rates and currency volume, but the degrees are different from the Gangnam area model. Overall, our study shows that interest rates and money supply were the main factors of apartment price changes, but apartment prices in non-Gangnam areas are more sensitive to changes in interest rates and money supply.

A Study on the Carbon Taxation Method Using the Real Business Cycle Model (실물적 경기변동모형을 이용한 탄소세 부과방식에 관한 연구)

  • Chung, In-sup;Jung, Yong-gook
    • Environmental and Resource Economics Review
    • /
    • v.27 no.1
    • /
    • pp.67-104
    • /
    • 2018
  • In this paper, we compare the spread effects of the carbon tax imposition method using the real business cycle model considering the productivity and energy price shocks. Scenario 1 sets the carbon tax rate that encourages the representative firm to maintain a constant $CO_2$ reduction ratio in accordance with its green house gas reduction targets for each period. Scenario 2 sets the method of imposing the steady state value of the carbon tax rate of Scenario 1 during the analysis period. The impulse response analysis shows that the responses of $CO_2$ emissions to external shocks are relatively sensitive in scenario 2. And simulation results show that the cost of $CO_2$ abatement is more volatile in scenario 1, and $CO_2$ emissions and $CO_2$ stock are more volatile in scenario 2. In particular, the percentage changes in volatility between the two scenarios of $CO_2$ emissions and $CO_2$ stock increase as the green house gas reduction target is harder. When the green house gas reduction target is 60% and over, the percentage changes(absolute value) between the two scenarios exceed the percentage change(absolute value) of the $CO_2$ reduction cost between them.

Temperature Dependence of the Kinetic Constants in Acidogenesis Process of Anaerobic Digestion (혐기성소화의 산발효과정에 있어서 동역학정수의 온도의존성)

  • Cha, Gi-Cheol;Jeong, Tae-Young;Yoo, Ik-Keun;Kim, Dong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.839-845
    • /
    • 2007
  • Temperature dependence of kinetic constants in the anaerobic acidogenesis was investigated using anaerobic chemostat-type reactor. Glucose was used as a substrate in this experiment. Temperature ranging from 15 to $30^{\circ}C$ were studied. The saturation constant$(k_s\upsilon)$ and growth yield(Y) decreased with increasing temperature, while the maximum specific substrate utilization rate$(\upsilon_{max})$ increased. A temperature correction factor$(Q_{10})$ values of the substrate utilization rate and bacteria growth rate were the range from 1.3 to 2.2 and 1.5 to 2.2, respectively. The growth yield(Y) for the acidogenesis process was less sensitive to temperature changes than the maximum specific substrate utilization rate$(\upsilon_{max})$. The simulation model of the relationship between the substrate and sludge retention time(SRT) at the temperature range of 20 to $30^{\circ}C$ is obtained as the following ; $1/SRT={(6.53){\cdot}(1.038)^{T-20}{\cdot}(S/X)}/{(1.38){\cdot}(0.983)^{T-20}+(S/X)}$.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.