• 제목/요약/키워드: Rat bone

검색결과 621건 처리시간 0.03초

The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects

  • Ling Li;Jungwon Lee;Young-Dan Cho;Sungtae Kim;Yang-Jo Seol;Yong-Moo Lee;Ki-Tae Koo
    • Journal of Periodontal and Implant Science
    • /
    • 제53권4호
    • /
    • pp.259-268
    • /
    • 2023
  • Purpose: Hyaluronic acid (HA) affects angiogenesis and promotes the migration and differentiation of mesenchymal cells, thereby activating the osteogenic ability of osteoblasts. Although studies on the action of HA during bone regeneration are being actively conducted, the optimal dose of HA required for bone regeneration remains unclear. Therefore, the purpose of this study was to elucidate the most effective HA dose for bone formation using a rat critical-size defect model. Methods: Thirty rats were randomly divided into 5 groups, with 6 rats in each group. An absorbable collagen sponge soaked with HA or saline was used to fill an 8-mm defect, which was then covered with a collagen membrane. Different treatments were performed for each group as follows: (1) saline control, (2) 1 mg/mL HA, (3) 25 mg/mL HA, (4) 50 mg/mL HA, or (5) 75 mg/mL HA. After a healing period of 4 weeks, micro-computed tomography and histological analysis were performed. The obtained values were analyzed using analysis of variance and the Tukey test (P<0.05). Results: At week 4, the 75 mg/mL HA group had the highest bone volume/total volume ratio, new bone, and bone fill among the 5 groups, and these values were significantly different from those observed in the control group (P<0.01) and 1 mg/mL HA group (P<0.001). More active bone formation was observed in the higher-dose HA groups (25 mg/mL, 50 mg/mL, and 75 mg/mL HA), which included a large amount of woven bone. Conclusions: The 75 mg/mL HA group showed better bone formation than the other groups (1, 25, and 50 mg/mL HA and control).

백서 두개골 부분결손시 골막 유무에 의한 골치유 양상에 관한 연구 (THE STUDY OF BONE HEALING ON PARTIAL DEFECT OF CALVARIAL BONE WITH OR WITHOUT PERIOSTEUM IN RAT)

  • 송영완;조병욱;심정원
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제18권4호
    • /
    • pp.746-757
    • /
    • 1996
  • Bony defects may be found as a result of congenital anomalies, traumatic injury, automobile collisions and industrial accidents in the maxillofacial area. Such conditions are often associated with severs functional and esthetic problem. Various surgical procedure has been utilized in attempts to repair and reconstruct bony defects. Bone is a complex, living, constantly changing tissue. The architecture and composition of cancellous and cortical bone allow the skeleton to perform its essential mechanical functions. Periosteum covers the external surface of bone and consists of two layers : an outer fibrous layer and an inner more cellular and vascular layer. The inner osteogenic layer or cambium layer can form new bone while the outer layer firms part of the insertions of tendons, ligaments and muscles. This study was under taken to evaluate bone healing process on partial defect of calvarial bone with or without periosteum in rat. We made calvarial defects of different size(4mm, 6mm, 8mm) with periosteum or without periosteum in rat to study the effect of defect size on healing process. Control and experimental groups sacrified at 1, 2, 4, 6, 8 weeks, postoperatively. We examed the specimens by gloss findings, light microscophy, and fluorescent microscophy. The results were as follows. 1. Gloss findings: Control groups are larger bony defects than experimental groups after 2 weeks, and than control groups advanced healing of defected bone but experimental groups are lesser after 4, 6 weeks. After 8 weeks, bone defect has not been identified in control and experimental groups. 2. Light microscope: All defects of control groups are larger bony defects than experimental groups after 2 weeks. And than control groups show smaller defect after 4 weeks. After 8 weeks, the control group reveal pin-point sized, hardly identifiable defect space and the experimental group reveal small, but definite defect space. 3. Fluorescent microscope : Each week, new bone formation of control group is very similar to the experimental group. In this study, Osteogenesis of calvarial bone defects with periosteum or without periosteum was examined for 8 weeks in rats. The replaced periosteum had batter new bone formation than the removed periosteum.

  • PDF

백서 두개골 결손에서 rhBMP-2와 다양한 carrier의 골재생 유도효과 (Effects of rhBMP-2 with various carriers on bone regeneration in rat calvarial defect)

  • 이서경;김지선;강은정;엄태관;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제38권2호
    • /
    • pp.125-134
    • /
    • 2008
  • Purpose: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study evaluated the bone regenerative effect of rhBMP-2 delivered with different carrier systems. Materials and Methods: 8 mm critical-sized rat calvarial defects were used in 60 male Sprague-Dawley rats. The animals were divided into 6 groups containing 10 animals each. Two groups were controls that had no treatment and absorbable collagen membrane only. 4 groups were experimentals that contained rhBMP-2 only and applied with absorbable collagen sponge($Collatape^{(R)}$), $MBCP^{(R)}$, Bio-$Oss^{(R)}$ each. The histological and histometric parameters were used to evaluate the defects after 2- or 8-week healing period. The shape and total augmented area were stable in all groups over the healing time. Results: New bone formation was significantly greater in the rhBMP-2 with carrier group than control group. rhBMP-2/ACS was the highest in bone density but gained less new bone area than rhBMP-2/$MBCP^{(R)}$ and rhBMP-2/Bio-$Oss^{(R)}$. The bone density after 8 weeks was greater than that after 2 weeks in all groups. However, rhBMP-2 alone failed to show the statistically significant difference in new bone area and bone density compared to control group. Also $MBCP^{(R)}$ and Bio-$Oss^{(R)}$ particles remained after 8 weeks healing period. Conclusion: These results suggest that rhBMP-2 with carrier system is an excellent inductive agent for bone formation and we can use it as the predictable bone tissue engieering technique. Future study will likely focus on the kinetics of BMP release and development of carriers that is ideal for it.

단백질 전달 영역 융합-Bone Morphogenetic Protein-2가 백서 두개골 결손부에서 골 조직 재생에 미치는 효과 (Effect of protein transduction domain fused-bone morphogenetic protein-2 on bone regeneration in rat calvarial defects)

  • 엄유정;조규성;김종관;최성호;채중규;김창성
    • Journal of Periodontal and Implant Science
    • /
    • 제38권2호
    • /
    • pp.153-162
    • /
    • 2008
  • Purpose: Recombining bone morphogenetic protein (BMP) is usually acquiredfrom high level animals. Though this method is effective, its high cost limits its use. The purpose of this study was to evaluate the effect of bone morphogenetic protein-2 with protein transduction domain (BMP-2/PTD;TATBMP-2) on bone regeneration. Rat calvarial defect model and osteoblastic differentiation model using MC3T3 cell were used for the purpose of the study. Materials and Methods: MC3T3 cells were cultured until they reached a confluence stage. The cells were treated with 0, 0.1, 1, 10, 100, 500 ng/ml of BMP-2/PTD for 21 days and at the end of the treatment, osteoblastic differentiation was evaluated usingvon Kossa staining. An 8mm, calvarial, critical-size osteotomy defect was created in each of 48 male Spraque-Dawley rats (weight $250{\sim}300\;g$). Three groups of 16 animals each received either BMP-2/PTD (0.05mg/ml) in a collagen carrier, collagen only, or negative surgical control. And each group was divided into 2 and 8 weeks healing intervals. The groups were evaluated by histologic analysis(8 animals/group/healing intervals) Result: In osteoblastic differentiation evaluation test, a stimulatory effect of BMP-2/PTD was observed in 10ng/ml of BMP-2/PTD with no observation of dose-dependent manner. The BMP-2/PTD group showed enhanced local bone formation in the rat calvarial defect at 2 weeks. New bone was observed at the defect margin and central area of the defect. However, new bone formation was observed only in 50% of animals used for 2weeks. In addition, there was no new bone formation observed at 8 weeks. Conclusion: The results of the present study indicated that BMP-2/PTD(TATBMP-2) have an positive effect on the bone formation in vitro and in vivo. However, further study should be conducted for the reproducibility of the outcomes.

The Effect of Risedronate on Posterior Lateral Spinal Fusion in a Rat Model

  • Gezici, Ali Riza;Ergun, Ruchan;Gurel, Kamil;Yilmaz, Fahri;Okay, Onder;Bozdogan, Omer
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권1호
    • /
    • pp.45-51
    • /
    • 2009
  • Objective : To evaluate the potential effects of risedronate (RIS) which shows a higher anti-resorptive effect among bisphosphonates, after a posterolateral lumbar intertransverse process spinal fusion using both autograft and allograft in a rat model. Methods : A totoal of 28 Sprague-Dawley rats were randomized into 2 study groups. A posterolateral lumbar intertransverse process spinal fusion was peformed using both autograft and allograft in a rat model. Group I (control) received 0.1 mL of steril saline (placebo) and Group II (treatment) received risedronate, equivalent to human dose (10 ${\mu}g$/kg/week) for 10-weeks period. Results : The fusion rates as determined by manual palpation were 69% in the group I and 46% in the group II (p = 0.251). According to radiographic score, the spinal segment was considered to be fused radiographically in 7 (53%) of the 13 controls and 9 (69%) of the 13 rats treated with RIS (p = 0.851). The mean histological scores were 5.69 ${\pm}$ 0.13 and 3.84 ${\pm}$ 0.43 for the control and treatment groups, respectively. There was a significant difference between the both groups (p = 0.001). The mean bone density of the fusion masses was 86.9 ${\pm}$ 2.34 in the control group and 106.0 ${\pm}$ 3.54 in the RIS treatment group. There was a statistical difference in mean bone densities of the fusion masses comparing the two groups (p=0.001). Conclusion : In this study, risedronate appears to delay bone fusion in a rat model. This occurs as a result of uncoupling the balanced osteoclastic and osteoblastic activity inherent to bone healing. These findings suggest that a discontinuation of risedronate postoperatively during acute fusion period may be warranted.

백서 경골에서 신연속도에 따른 골형성 비교 연구 (A COMPARISON STUDY ON DISTRACTION OSTEOGENESIS IN THE RAT'S TIBIA ACCORDING TO DISTRACTION RATES)

  • 김부경;신상훈;김종렬
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권6호
    • /
    • pp.620-627
    • /
    • 2000
  • The purpose of this study is to investigate the clinical and histologic changes in distraction osteogenesis according to different distraction rates in the rat's tibia. Eighteen adult rats underwent open osteotomy and attachment of an external unilateral distraction device in the middle of left tibia. Latency was allowed for 7 days before distracton began. The distraction device was activated with varying distraction rates of 0.5mm, 1mm, 2mm and same rhythm of twice a day until 5mm length gain was achieved. The animals were sacrificed at post-distraction 4, 8 weeks to observe the bony healing states. At each group, clinical, radiographic and histologic studies were done. The results obtained from this study were as follows: 1. The 0.5mm group showed excellent osteogenesis than other groups. The new bone was formed by intramembranous bone formation mostly and endochondral bone formation partly. 2. The 1mm group showed delayed osteogenesis and incomplete bony healing at 8 weeks. 3. The 2mm group showed weak osteogenesis and fibrous union or nonunion at 8 weeks. From these results, it could be stated that distraction rate of 0.5mm per day was most useful in rat's tibia. The rate of 1mm showed delayed bony healing and needed more consolidation period. Distraction osteogenesis is a excellent clinical method for regenerating local bone deficiencies in limbs and craniofacial area. The more studies needed for the higher animals and human about distraction rates and other biomechanical factors on the basis of this study.

  • PDF

방사선조사와 저칼슘식이가 치아형성시 Interleukin-1의 분포에 미치는 영향에 관한 연구 (The Effects of Irradiation and Calcium-deficient Diet on the Expression of Interleukin-1 during Tooth Formation of Rat Molar)

  • 김일중;황의환;이상래
    • Imaging Science in Dentistry
    • /
    • 제30권3호
    • /
    • pp.159-168
    • /
    • 2000
  • Purpose: To elucidate the effects of the irradiation and calcium-deficient diet on expression of interleukin (IL)-1 during tooth formation of rat molar. Materials and Methods: The pregnant three-week-old Spague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group, and the experimental groups were irradiation/normal diet group and irradiation/calcium-deficient diet group. The abdomen of the rats on the 9th day of pregnancy were irradiated with single dose of 350 cGy, The rat pups were sacrificed on the 14th day after delivery and the maxillae tooth germs were taken. The specimen were prepared to make sections for light microscopy, and some of tissue sections were stained immunohistochemically with anti-IL-l antibody. Results: In the irradiation/normal diet group, dental follicle showed fewer blood vessels, mononuclear cells, and fusions of mononuclear cells than in non-irradiation/normal diet group. Alveolar bone showed a few osteoblasts and osteoclasts. Periodontal ligament showed collagen fibers and fibroblasts with irregularity. Weak immunoreactivity for IL-l was shown in dental follicle, alveolar bone, and periodontal ligament. In the irradiation/calcium-deficient diet group, dental follicle showed sparse cellularity. Alveolar bone showed diminished number of osteoblasts. Periodontal ligament showed irregular collagen fibers and atrophy of cementoblasts and fibroblasts. No immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. Conclusion: Irradiation and calcium-deficient diet seems to cause disturbance of the expression of interleukin-l during tooth formation of rat molar.

  • PDF

연교의 파골세포 분화 및 골 흡수 억제 기전 연구 (Forsythiae Fructus Extract Inhibits RANKL-Induced Osteoclast Differentiation and Prevent Bone Loss in OVX-Induced Osteoporosis Rat)

  • 엄지환;김재현;김민선;김상우;신화정;정혁상;손영주
    • Korean Journal of Acupuncture
    • /
    • 제36권2호
    • /
    • pp.115-126
    • /
    • 2019
  • Objectives : Osteoporosis is a condition characterized by low bone mass and increased bone fragility. It has become a major problem of senior citizens. The purpose of this study is to experiment the effect of water extract of Forsythiae Fructus (wFF) on osteoclast differentiation; and the other purpose is to examine the effect of wFF on osteoporosis in ovariectomized rat. Methods : To investigate the effect of wFF on osteoclast differentiation and activity, RAW 264.7 cells were used. The number of TRAP positive cell, TRAP activity, pit area, mRNA expression of makers (RANK, TRAP, CA II, CTK, MMP-9, NFATc1, c-Fos), protein expression of makers (NFATc1, c-Fos) were investigated. For in vivo study, 40 female Sprague-Dawley (SD) rats were induced osteoporosis by ovariectomy (OVX) and then tested for anti-osteoporosis effect by administration of wFF. Results : wFF suppressed osteoclatogenesis, TRAP activity and pit area formation. Moreover, wFF decreased the expression of master differentiation factors (NFATc1, c-Fos) and also reduced the osteoclastogenesis-related markers (TRAP, CA II, CTK, MMP-9). These suggest that wFF inhibit osteoclasts differentiation and bone resorption. In the OVX rat model, wFF inhibited decreasing of BMD and trabecular area. Conclusions : Forsythiae Fructus should be effective for osteoporosis prevention and treatment.

Effects of Silkworm Pupae on Bone Mineral Density in Ovariectomized Rat Model of Osteoporesis

  • Ryu, Kang-Sun;Lee, Heui-Sam;Kim, Kee-Young;Kim, Mi-Ja;Kang, Pil-Don
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제24권2호
    • /
    • pp.63-68
    • /
    • 2012
  • Osteoporosis is characterized by the reduced density of mineralized bone matrix. The loss of bone has been attributed to an imbalance between bone formation and bone resorption. The silkmoth is one of the famous traditional tonic medicines. Silkworm pupa was evaluated for its antiosteoporotic activity in an ovariectomized rat model of osteoporosis. The rats were ovariectomized at 6weeks of age and divided into 7 groups. All the groups were fed without calcium diet. The OVX rats were treated with water and silkworm powder for 6 weeks. In OVX rats, the body weight, feeding and water intake quantity did not show a significant change, but the silkworm pupa powder immediately before the eclosion of Yeonrokjam was significantly increased the bone mineral density in the femoral bone. The silkworm pupa powder increased the bone with increasing calcium in serum. These results also showed its protective action through promotion of bone formation. The silkworm pupa powder has a definite antiosteoporotic effect; similar to estrogen, it is especially effective for the prevention of bone fracture induced by estrogen deficiency. The silkworm pupa powder is a promising anti-osteoporotic agent that can prevent bone fractures in osteoporotic patients. The silkworm pupa powder does not show serious side effects because natural herbal medicine origin.

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.