• Title/Summary/Keyword: Rat aortic smooth muscle cells

Search Result 52, Processing Time 0.017 seconds

Biological Activity and Manufacturing of Yanggeng with Yangha Flower Buds (양하 꽃대의 생리활성 및 양갱 제조)

  • Kim, Min-Ju;Kim, Ae-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1180-1185
    • /
    • 2015
  • This study was performed to investigate the biological activity of yangha flower buds as well as to manufacture of yanggeng prepared with various levels (0 g, 3 g, 6 g, 9 g, and 12 g) of yangha flower buds. DPPH and ABTS scavenging activities of yangha flower buds were 96% and 57% compared to levels of vitamin C, respectively. In the oxygen radical antioxidant capacity assay, antioxidant activity increased dose dependently up to $500{\mu}g/mL$ of yangha flower buds. There was no toxicity up to $1,000{\mu}g/mL$ in vascular smooth muscle cells, and yanggeng significantly reduced migration and proliferation by platelet-derived growth factor-BB-stimulated rat aortic smooth muscle cell migration and proliferation. In the sensory evaluation, the optimal sample was YY9, which was prepared with 9 g of yangha flower buds. It can be concluded that yangha flower buds show antioxidant and vascular protective activities. The optimal sample (YY9) is expected to contribute as a new functional food.

The Protective Effects of Ascorbic Acid on the Vascular Motilities in Streptozotocin- induced Diabetic Rat (당뇨병 백서의 복부 대동맥 운동성에 대한 Vit C 의 보호효과)

  • 김영진;양기민;조대윤;손동섭;이무열
    • Journal of Chest Surgery
    • /
    • v.34 no.7
    • /
    • pp.515-523
    • /
    • 2001
  • Background: More than 70% of morbidity and mortality of diabetes mellitus is due to macrovascular complications. These complications may be associated with defect of endothelium-dependent vascular relaxation. There have been suggestions that this defect might be due to direct toxicities of oxygen-free radical. So in this study ascorbic acid was used as a dietary supplement in streptozotocin induced diabetic rats to correct this defect. Material and Method: Sixty male Sprague-Dawley rats were used in this study. They were divided into control and experimental groups. Streptozotocin was injected to the 33 rats of experimental group and then divided into two the other receiving subgroups; one receiving ascorbic acid supplement(1 g/l in drinking water); and nosupplements. At 6, 9 and 12 weeks, abdominal aortic rings were obtained to make tissue preparations for evaluation of vascular smooth muscle contractility. Result: While control group showed good response to acetylcholine induced relaxation, diabetic group showed decreased relaxation regardless of ascorbic acid supplement at the experiments 6 weeks after streptozotocin treatment. This abnormal endothelium-dependent vascular relaxation was markedly reversed at 9 and 12 weeks into the diabetic group with ascorbic acid supplement. There were no differences in sodium nitroprusside induced relaxation responses between control and experimental groups; also, norepinephrine induced contractile responses did not show any remarkable effects. Conclusion: These results strongly suggest that the endothelial cells have defects in diabetic rats. Dietary supplement of ascorbic acid can reverse the defects of diabetic endothelial cells through its antioxidant effects and it may further protect against vascular disease in diabetic patients.

  • PDF