• Title/Summary/Keyword: Rat Brain

Search Result 1,020, Processing Time 0.034 seconds

Immunohistochemical localization of PLC in rat brain after chronic ECS

  • Hey suk Ihm;You, Je-Kyung;Ryu, Jae-Ryun;Shin, Chan-Young;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.197-197
    • /
    • 1998
  • Chronic electroconvulsive shock(ECS) was shown to Increase phosphatidylinositol-4,5-bisphosphate(PIP$_2$) breakdown and the activity of PLC with the accumulation of inositol-1,4,5-triphosphate(IP3). The purpose of the present study was to determine the effect of ECS on the expression of phospholipase C(PLC) isotypes in rat brain. Two groups of animals were prepared: sham and ECS treated groups. Rats in ECS treated groups received maximal ECS(70mA, 0.5second, 60㎐) by constant current stimulator through ear-clip to induce tonic extension seizures for 12 consecutive days. The expression of PLC isotypes in rat brain was determined by immunohistochemical procedure using sagital section of rat brain. The immunoreactivity of PLC${\beta}$1 was observed in corpus striatum, hippocampus, thalamus and that of PLC${\gamma}$1 in corpus striatum, hippocampus, thalamus, frontal cortex, parietooccipital cortex, limbic forebrain, pons, medulla, superior colliculus, inferior colliculus, rest of midbrain. The amount of PLC was analyzed by Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1. Chronic ECS reduced the immunoreactivity of PLC${\beta}$1 in corpus striatum, hippocampus, thalamus but had little effect on PLC${\gamma}$1. To quantify this change, quantitative Western blot using antibodies against PLC${\beta}$1 and PLC${\gamma}$1 was conducted. The immunoreactivity of PLC${\beta}$1 in ECS treated rat whole brain was decreased by 40 % in cytosolic fraction and 26 % in membrane fraction. This different effect of ECS on PLC isotypes may results from the difference of their activation mechanisms and the different effects of ECS on them. The results from the present study suggest that chronic ECS primalily affects neurotransmitter receptors related IP$_3$ signaling in rat brain.

  • PDF

EFFECT OF MONOSODIUM GLUTAMATE ON BRAIN TYROSINE HYDROXYLASE, DOPAMINE-${\beta}$-HYDROXYLASE, TRYPTOPHAN HYDROXYLASE AND MONOAMINE OXIDSE IN RAT

  • Park, C.W.;Suh, Y.H.;Song, D.K.
    • Toxicological Research
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1987
  • The effects of monosodium glutamate (MSG) on the activities if tyrosine hydroxylase (TH), dopamine ${\beta}$-hydroxylase (DBH), tryptophan hydroxylase (TPH) and monoamine oxidase (MAO) in various regions (cerebral cortex, striatum, midbrain, pons and medulla of nat brain have been determined. It was observed that up to 1mM MSGhad no significant effects on the activities of brain tyrosine hydroxylase, dopamine ${\beta}$-hydroxylase, tryptophan hydroxylase and monoamine oxidase in all regions of rat brain. These results indicated that MSG itself exerted no direct effect on the important enzymes synthsizing and metabolizing the monoaminergic neuronal system.

  • PDF

Alteration of G$\beta$ Expression in Rat Brain by Stress

  • Myung, Chang-Seon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.83.1-83.1
    • /
    • 2003
  • The heterotrimeric G protein subunits (G ) are region-specifically expressed in brain such as hypothalamus and pituitary gland in abundant, suggesting that is may be associated with “stress-axis”. This study was designed to examine the effect of stress on the region-specific expression of various G subunits in rat brain. The localization of mRNAs encoding seven of G and striking region-specific patterns of expression were observed in 12 different regions of both non-stressed and stressed rat brain; (1) frontal cortex area, (2) cerebral cortex area, (3) striatum, (4) hippocampus area, (5) thalamus, (6) brain stem, (7) cerebellum area, (8) hypothalamus, (9) septum, (10) amygdala, (11) preoptic area, and (12) pituitary gland. (omitted)

  • PDF

Rat Duodenal Mucosa Inositol Monophosphatase; Novel Enzyme of Which Properties are Distinct from Brain Enzyme

  • Kwon, Hyeok-Yil;Lim, Bong-Hee;Park, Hyung-Seo;Lee, Yun-Lyul;Lee, Eun-Hee;Choi, Soo-Young;Park, Hyoung-Jin
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.274-280
    • /
    • 1998
  • An inositol monophosphatase (IMPase) was purified to homogeneity from rat duodenal mucosa for the first time and its enzymatic properties were investigated. Rat duodenal mucosa peculiarly exhibited the highest IMPase activity among various rat tissues examined. By means of ammonium sulfate precipitation, followed by Q-Sepharose, polylysine agarose, reactive-red agarose column chromatography, Uno-Q FPLC, and Bio-Silect FPLC, duodenal IMPase was purified 223-fold to a specific activity of 13.6 U/mg protein. The molecular mass of the native enzyme was estimated to be 48,000 Da on gel filtration. The subunit molecular mass was determined by SDS-PAGE to be 24,000 Da. These results indicate that duodenal IMPase is a dime ric protein made up of identical subunits. Rat duodenal IMPase has distinct properties from brain IMPase. It has a broad spectrum of substrate specificity and is insensitive to $Li^+$. Duodenal IMPase does not absolutely require $Mg^{2+}$ for its catalytic activity. Furthermore, duodenal IMPase is less stable to heat than brain enzyme. It is suggested that the rat duodenal mucosa needs a large amount of IMPase whose properties are quite different from that of the brain enzyme.

  • PDF

The Effect of Gongjin-dan on Gliosis in Middle Cerebral Artery Occlusion (MCAO) Rats (공진단이 MCAO모델 흰쥐에서 gliosis 억제에 마치는 영향)

  • Seong, Kee-Moon;Hae, Rae-Kyong;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.674-684
    • /
    • 2009
  • Objectives : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis becomes a physical and a mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. This study was undertaken to examine the effect of the Gongjin-dan (GJD) on CD81 and GFAP expression and its pathway in the rat brain following middle cerebral artery occlusion (MCAO). Methods : In order to study ischemic injuries on the brain, infarction was induced by MCAO using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Also, c-Fos and ERK expression were measured to investigate the signaling pathway after GJD administration in MCAO rats. Results : Measuring the size of cerebral infarction induced by MCAO in the rat after injection of GJD showed the size had decreased. GJD administration showed pyramidal cell death protection in the hippocampus in the MCAO rat. GJD administration decreased GF AP expression in the MCAO rat. GJD administration decreased CD81 expression in the MCAO rat. GJD administration induced up-regulation of c-FOS expression compared with MCAO. GJD administration induced down-regulation of ERK expression compared with MCAO. Conclusion : We observed that GJD could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of a rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the regulation of c-Fos and ERK. These results suggest that GJD can be a candidate to regenerate CNS injury.

  • PDF

Effect of Gastrodiae Rhizoma on Apoptosis in Cerebral Infarction Induced by Middle Cerebral Artery Occlusion in Rats (천마가 중대뇌동맥 폐쇄 흰쥐의 신경세포 자연사에 미치는 영향)

  • Youn, You-Suk;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Objectives : This study evaluates neuroprotective effect of Gastrodiae Rhizoma on apoptosis in the cerebral infarct. Methods : Cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) for 2 hours with intraluminal thread method in Sprague-Dawley rats. Then ethanol extract of Gastrodiae Rhizoma was administered orally for 3 days. Infarct area and volume were evaluated with TTC staining. Neuronal apoptosis was identified with TUNEL labeling. Apoptosis modulatory effect was observed with immunohistochemical Bax, Bcl-2, iNOS, and MMP-9 expressions in penumbra. Results : 1. Ethanol extract of Gastrodiae Rhizoma reduced infarct size partly and volume significantly of in the MCAO rat brain. 2. Ethanol extract of Gastrodiae Rhizoma reduced TUNEL positive cell ratio in the penumbra of MCAO rat brain significantly. 3. Ethanol extract of Gastrodiae Rhizoma suppressed Bax, iNOS and MMP-9 expression in the penumbra of MCAO rat brain significantly. 4. Ethanol extract of Gastrodiae Rhizoma did not change Bcl-2 expression in the penumbra of MCAO rat brain. But expression ratio of Bcl-2 against Bax was increased in the Gastrodiae Rhizoma group. Conclusions : These results suggest that Gastrodiae Rhizoma plays an anti-apoptotic neuroprotective effect through suppression of Bax, iNOS, and MMP-9 expressions and relative up-regulation of Bcl-2 in the ischemic brain tissue.

Regional Heterogeneity of Morphological Changes in Cultured Rat Astrocytes

  • Won, Chung-Kil;Oh, Young-S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.467-477
    • /
    • 2001
  • We examined astrocyte regional heterogeneity in their morphological changes in response to various stimuli. Astrocytes were cultured from six different neonatal rat brain regions including cerebral cortex, hippocampus, cerebellum, mid brain, brain stem and hypothalamus. Astrocyte stellation was induced by serum deprivation and the maximum stellation in different regional astrocytes was achieved after 2 h. After 24 h, in all astrocyte cultures, the level of stellation returned to their original level. Cerebellar or hypothalamic astrocytes were the most or the least sensitive, respectively, to serum deprivation. The order of maximum sensitivity to serum deprivation among different regional astrocytes was: cerebellum>mid $brain{\ge}hippocampus,\;brain\;stem{\ge}cerebral$ cortex>hypothalamus. Isoproterenol-induced astrocyte stellation was also examined in different regional astrocytes, and similar order of maximum sensitivity as in serum deprivation was observed. Next a possible developmental effect on astrocyte morphological changes was examined in cerebral cortex and cerebellum astrocytes cultured from postnatal day 1 (P1), P4 and P7 rat brains. A much higher sensitivity of cerebellum astrocytes to serum deprivation as well as isoproterenol treatment was consistently observed in P1, P4 and P7-derived astrocytes compared to cerebral cortex astrocytes. The present study demonstrates different regional astrocytes maintain different levels of morphological plasticity in vitro.

  • PDF

Expression of galectin-3 in rat brain (랫트 뇌에서의 galectin-3의 검출)

  • Lee, Yoo-Kyoung;Kang, Hae Eun;Woo, Hee Jong
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • Galectin family, endogenous ${\beta}$-galactoside-binding animal lectins, is known for the role in cell differentiation, morphogenesis, apoptosis and tumorigenesis. Galectin-3, one of family member, has been studied for its role in cell differentiation and tumor metastasis, and for its expression on epithelial cells of colon and mast cells but not in brain. Several reports, however, suggest its expression in brain including as a prion binding protein. In this report we explored possibility of galectin-3 expression in brain tissue. With Western blot and RT-PCR with rat brain tissues, we could detect galectin-3 that was not shown by conventional immunohistochemistry. Our results indicated galectin-3 was expressed in brain, and substantiate the previous report on galecin-3 as a prion-related protein in brain.

Molecular Evidence for the Presence of Polymorphism in the Gene of S-100 Beta Protein Expressed in Rat Brain (쥐 뇌에서 발현되는 S-100 Beta유전자의 Polymorphism에 대한 분자생물학적 증거)

  • Shin, Song-Woo;Kwon, O-Sik;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.4 no.2
    • /
    • pp.137-142
    • /
    • 1998
  • We examined mRNAs, isolated from the rat brain, to ascertain if there is any polymorphism for S-100 beta protein gene. As templates for polymerase chain reaction (PCR) the reverse-transcribed cDNA from the rat brain or phage DNAs isolated from the rat brain cDNA libraries were used. Although PCR products turned out to be exactly same as the expected size based on the previously reported mRNA sequence a single base substitution (CAT to CAC) was identified at nucleotide level. This change was considered as polymorphism since it did not cause any change of the primary structure for S-100 beta protein. This result should facilitate the understanding of the overall structure of the gene for S-100 beta protein.

  • PDF

γ-aminobutyric Acid Content in House Rat and Fowl Brain (집쥐와 닭 뇌의 γ-Aminobutyric acid 함량)

  • Huh, Rhin Sou
    • Korean Journal of Veterinary Research
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 1971
  • Current interest in ${\gamma}$-aminobutyric acid (GABA) has arisen from the convergence of several independent line of investigation leading to the demonstration that this and related substances are normal products of brain metabolism and that GABA has an important physiological action upon brain function as well as upon certain peripheral nervous structures. The interest for neurophysiologists has been enhanced by the importance of the discovery for the role of humoral mediator of synaptic transmission or regulator of neuronal activity in the central nervous system, particularly if it may shed some elight upon the nature of central inhibitory processes. In accordance with such an interest and importance, this work was performed in order to standardize the normal content as a preliminary investigation of so-called night active and daytime active animals GABA content in their brains when they are exposed to light and darkness. The method, through which the estimation has made in this work, was paper chromatographic method developed by Maynert and Klingman for the estimation of GABA content in animal tissues. The results obtained are summerized as follows: 1) GABA content in the cerebral cortex of house rat ranged from 90 to $310{\mu}g/gm$ of wet weight. 2) The content of GAGA ranging from 130 to $510{\mu}g/gm$ of wet weight was occurred from midbrain of the rat. 3) GABA content was ranged from 30 to $150 {\mu}g/gm$ of wet weight of the rat cerebellum. 4) The contents of fowl cerebral cortex, midbrain, and cerebellum are estimated as ranging 230-590, 250-620, $50-280{\mu}g/gm$ of wet weight, respectively. As a result, it may be concluded that among three brain tissues of both animals the midbrain is the highest region in GABA content. Fowl brain, on the other side, contains more higher GABA content than the house rat brain does.

  • PDF