Effect of Gastrodiae Rhizoma on Apoptosis in Cerebral Infarction Induced by Middle Cerebral Artery Occlusion in Rats

천마가 중대뇌동맥 폐쇄 흰쥐의 신경세포 자연사에 미치는 영향

  • Youn, You-Suk (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Kyung-Hee University) ;
  • Lee, Jong-Soo (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Kyung-Hee University)
  • 윤유석 (경희대학교 한의과대학 한방재활의학과교실) ;
  • 이종수 (경희대학교 한의과대학 한방재활의학과교실)
  • Received : 2009.04.07
  • Accepted : 2009.07.02
  • Published : 2009.07.31

Abstract

Objectives : This study evaluates neuroprotective effect of Gastrodiae Rhizoma on apoptosis in the cerebral infarct. Methods : Cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) for 2 hours with intraluminal thread method in Sprague-Dawley rats. Then ethanol extract of Gastrodiae Rhizoma was administered orally for 3 days. Infarct area and volume were evaluated with TTC staining. Neuronal apoptosis was identified with TUNEL labeling. Apoptosis modulatory effect was observed with immunohistochemical Bax, Bcl-2, iNOS, and MMP-9 expressions in penumbra. Results : 1. Ethanol extract of Gastrodiae Rhizoma reduced infarct size partly and volume significantly of in the MCAO rat brain. 2. Ethanol extract of Gastrodiae Rhizoma reduced TUNEL positive cell ratio in the penumbra of MCAO rat brain significantly. 3. Ethanol extract of Gastrodiae Rhizoma suppressed Bax, iNOS and MMP-9 expression in the penumbra of MCAO rat brain significantly. 4. Ethanol extract of Gastrodiae Rhizoma did not change Bcl-2 expression in the penumbra of MCAO rat brain. But expression ratio of Bcl-2 against Bax was increased in the Gastrodiae Rhizoma group. Conclusions : These results suggest that Gastrodiae Rhizoma plays an anti-apoptotic neuroprotective effect through suppression of Bax, iNOS, and MMP-9 expressions and relative up-regulation of Bcl-2 in the ischemic brain tissue.

Keywords

References

  1. 김영석. 임상중풍학. 서울:서원당. 1997:311-2, 349-50, 432-6, 438-45.
  2. 심우진, 정석희, 김성수, 신현대, 이종수. 중풍 주관절 경직에 대한 음경과 양경 전침 효과의 비교. 한방재활의학과학회지. 2003;13(1):95-111.
  3. Ng YS, Stein J, Ning M, Black-Schaffer RM. Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke. 2007;38(8):2309-14. https://doi.org/10.1161/STROKEAHA.106.475483
  4. Alberts MJ, Ovbiagele B. Current strategies for ischemic stroke prevention: role of multimodal combination therapies. J Neurol. 2007;254(10):1414-26. https://doi.org/10.1007/s00415-007-0569-9
  5. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493-501. https://doi.org/10.1083/jcb.119.3.493
  6. Putcha GV, Deshmukh M, Johnson EM Jr. BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, Bcl-2, and caspases. J Neurosci. 1999;19:7476-85.
  7. Padosch SA, Bottiger BW. Neuronal apoptosis following cerebral ischaemia: pathophysiology and possible therapeutic implications. Curr Opin Anaesthesiol. 2003;16(5):439-45. https://doi.org/10.1097/00001503-200310000-00001
  8. Kirino T. Delayed neuronal death. Neuropathology. 2000;20:S95-7. https://doi.org/10.1046/j.1440-1789.2000.00306.x
  9. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol. 2003;62(4):329-39. https://doi.org/10.1093/jnen/62.4.329
  10. Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 2000;301(1):173-87. https://doi.org/10.1007/s004419900154
  11. 김호철. 한약약리학. 서울:집문당. 2001:391-3.
  12. 안덕균. 한국본초도감. 서울:교학사. 2000:634.
  13. 박쾌환, 박동석, 강성길. 천마수침이 항경련효과에 미치는 영향. 경희한의대논문집. 1988;11:15-35.
  14. 이일돈, 장경전, 송춘호, 안창범. 천마수침이 진통 및 항경련효과에 미치는 영향. 대한침구학회지. 1997;14(1):438-48.
  15. 성은진, 김호철, 안덕균. 천마의 항고혈압작용에 관한 연구. 대한본초학회지. 1997;12(2):51-62.
  16. 양재하, 권용준, 김미려. 천마엑기스가 Spontaneously Hypertensive Rat에서 혈압 및 혈장 Catecholamin 함량의 변화에 미치는 영향. 대한한의학회지. 1995;16(2):433-46.
  17. Kim HJ, Hwang IK, Won MH. Vanillin, 4-hydroxybenzyl aldehyde and 4-hydroxybenzyl alcohol prevent hippocampal CA1 cell death following global ischemia. Brain Res. 2007;1181:130-41. https://doi.org/10.1016/j.brainres.2007.08.066
  18. Xu X, Lu Y, Bie X. Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons. Planta Med. 2007;73(7):650-4. https://doi.org/10.1055/s-2007-981523
  19. Huang NK, Lin YL, Cheng JJ, Lai WL. Gastrodia elata prevents rat pheochromocytoma cells from serum-deprived apoptosis: the role of the MAPK family. Life Sci. 2004;75(13):1649-57. https://doi.org/10.1016/j.lfs.2004.05.008
  20. Zea Longa EL, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84-91. https://doi.org/10.1161/01.STR.20.1.84
  21. Kim HJ, Moon KD, Lee DS, Lee SH. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death. J Ethnopharmacol. 2003;84(1):95-8. https://doi.org/10.1016/S0378-8741(02)00290-8
  22. Jung TY, Suh SI, Lee H, Kim IS, Kim HJ, Yoo HS, Lee SR. Protective effects of several components of Gastrodia elata on lipid peroxidation in gerbil brain homogenates. Phytother Res. 2007;21(10):960-4. https://doi.org/10.1002/ptr.2193
  23. Kim HJ, Lee SR, Moon KD. Ether fraction of methanol extracts of Gastrodia elata, medicinal herb protects against neuronal cell damage after transient global ischemia ingerbils. Phytother Res. 2003;17(8):909-12. https://doi.org/10.1002/ptr.1246
  24. Hsieh CL, Chen CL, Tang NY, Chuang CM, Hsieh CT, Chiang SY, Lin JG, Hsu SF. Gastrodia elata BL mediates the suppression of nNOS and microgl iaactivation to protect against neuronal damage in kainic acidtreated rats. Am J Chin Med. 2005;33(4):599-611. https://doi.org/10.1142/S0192415X0500320X
  25. Yu SJ, Kim JR, Lee CK, Han JE, Lee JH, Kim HS, Hong JH, Kang SG. Gastrodia elata blume and an active component, p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions. Biol Pharm Bull. 2005;28(6):1016-20. https://doi.org/10.1248/bpb.28.1016
  26. Zeng X, Zhang S, Zhang L, Zhang K, Zheng X. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med. 2006;72(15):1359-65. https://doi.org/10.1055/s-2006-951709
  27. Neame SJ, Rubin LL, Philpott KL. Blocking cytochrome c activity within intact neurons inhibits apoptosis. J Cell Biol. 1998;142:1583-93. https://doi.org/10.1083/jcb.142.6.1583
  28. Chan SL, Mattson MP. Caspase and calpain substrates: rolesin synaptic plasticity and cell death. J Neurosci Res. 1999;58:167-90. https://doi.org/10.1002/(SICI)1097-4547(19991001)58:1<167::AID-JNR16>3.0.CO;2-K
  29. Saraste A, PulkkiK. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528-37. https://doi.org/10.1016/S0008-6363(99)00384-3
  30. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Develop. 1999;13:1899-911. https://doi.org/10.1101/gad.13.15.1899
  31. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC. Upregulation of Bax protein levels in neurons following cerebral ischemia. J Neurosci. 1995;15:6364-76.
  32. Gibson ME, Han BH, Choi J, Knudson CM, Korsmeyer SJ, Parsadanian M, Holtzman DM. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med. 2001;7(9):644-55.
  33. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol. 2003;62(4):329-39. https://doi.org/10.1093/jnen/62.4.329
  34. Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I. Role of nitric oxide after brain ischaemia. Cell Calcium. 2004;36(3-4):265-75. https://doi.org/10.1016/j.ceca.2004.02.011
  35. Del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000;10(1):95-112. https://doi.org/10.1111/j.1750-3639.2000.tb00247.x
  36. Nomura Y. Neuronal apoptosis and protection: effects of nitric oxide and endoplasmic reticulum-related proteins. Biol Pharm Bull. 2004;27(7):961-3. https://doi.org/10.1248/bpb.27.961
  37. Luo CX, Zhu XJ, Zhang AX, Wang W, Yang XM, Liu SH, Han X, Sun J, Zhang SG, Lu Y, Zhu DY. Blockade of L-type voltagegated Ca$^{2+}$ channel inhibits ischemia-induced neurogenesis by downregulating iNOS expression in adult mouse. J Neurochem. 2005;94:1077-86. https://doi.org/10.1111/j.1471-4159.2005.03262.x
  38. Zhu DY, Deng Q, Yao HH, Wang DC, Deng Y, Liu GQ. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci. 2002;71:1985-96. https://doi.org/10.1016/S0024-3205(02)01970-7
  39. Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes in creasein focal cerebral ischemia in rat. J Cereb Blood Flow Metab. 1996;16(3):360-6. https://doi.org/10.1097/00004647-199605000-00002
  40. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LLJ, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004;35(4):998-1004. https://doi.org/10.1161/01.STR.0000119383.76447.05
  41. Liu KJ, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 2005;39:71-80. https://doi.org/10.1016/j.freeradbiomed.2005.03.033
  42. Gasche Y, Copin J-C, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2001;21:1393-400. https://doi.org/10.1097/00004647-200112000-00003
  43. Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediates nitric oxide-induced blood–brain barrier damage. Neurochem Res. 2004;29:579-87. https://doi.org/10.1023/B:NERE.0000014828.32200.bd
  44. Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 2007;22(5):E4.