• Title/Summary/Keyword: Rare Metal

Search Result 356, Processing Time 0.026 seconds

Magnetostrictive Properties of Polymer-Bonded Fe-Co Based Alloy Composites

  • S. M. Na;S. J. Suh;K. H. Shin;Lee, Y. S.;S. H. Lim
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.138-139
    • /
    • 2002
  • Polymer-bonded magnetostrictive composites have some distinct advantages over conventional type materials in being cost effective and suitable for high frequency applications due to high electrical resistivity. Composites of rare earth based alloys were reported to show good magnetostrictive characteristics both in static and dynamic conditions [1]. It was originally thought that the application of the polymer-bonding technique to transition metal alloys is straightforward. (omitted)

  • PDF

Recovery of Rare Metals from the Waste Secondary Lithium Ion Battery Cathode Active Materials Using Lactic Acid and Oxalic acid (젖산과 옥살산을 이용한 폐 이차 리튬이온 전지 양극 활물질로부터 희유금속들의 회수)

  • Kim, Younjung;Han, Ji Sun;Choi, Sik Young;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.446-452
    • /
    • 2019
  • We have developed a method that can leach Co, Mn, and Ni in the cathode active material safely using lactic acid. When cathode active material was leached by lactic acid, lactic acid showed the highest efficiency at 2 N than 1 N and above 4 N concentration. When the cathode active material was added incrementally into the solution of lactic acid, the maximum solubility was 30 g/L at 2 N concentration. Oxalic acid was added in the solution of lactic acid and it showed that rare metals represent the most economical recovery efficiency at 4 g/L. Based on this study, it was found that the optimal condition for recovery of rare metals from cathode active material is oxalic acid : cathode active material = 7 : 1 as a ratio of weight. In addition, it was observed that the precipitate produced by oxalic acid is a polynuclear crystalline material bonded with 3 components of Co, Ni, and Mn.

Effect of Rare Earth Metal on Catalyst for Hydrogenation Reaction (희토류가 수소화 촉매에 미치는 영향)

  • An, Jae Young;Jeon, Jong-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.151-156
    • /
    • 2018
  • As industry and medicine developed, many people became interested in the quality of life. As the concern for health became higher, vegetarian or vegetable oils became more popular than meat. With the development of processes primarily using nickel catalysts today, the shelf life of vegetable oils has increased and mobility has become more convenient. Currently nickel catalysts for the curing of oil are dominated by foreign companies in the world market. On the other hand, the mass production technology of domestic nickel catalyst is backward, and the entire amount is imported from foreign countries. Therefore, there is a need for active research and development of a catalyst that can be commercialized in korea. In this study, nickel as a main active catalyst was used as a base for hydrogen curing reaction, and the effect of rare earth on catalytic activity was investigated. A certain amount of rare earths could induce the dispersion of nickel to increase efficiency and use as co-catalyst.

Highly catalysis Zinc MOF-loaded nanogold coupled with aptamer to assay trace carbendazim by SERS

  • Jinling Shi;Jingjing Li;Aihui Liang;Zhiliang Jiang
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.313-327
    • /
    • 2023
  • Zinc metal organic framework (MOFZn)-loaded goad nanoparticles (AuNPs) sol (Au@MOFZn), which was characterized by TEM, Mapping, FTIR, XRD, and molecular spectrum, was prepared conveniently by solvothermal method. The results indicated that Au@MOFZn had a very strong catalytic effect with the nanoreaction of AuNPs formation between sodium oxalate (SO) and HAuCl4. AuNPs in the new indicator reaction had a strong resonance Rayleigh scattering (RRS) signal at 370 nm. The indicator AuNPs generated by this reaction, which had the most intense surface enhanced Raman scattering (SERS) peak at 1621 cm -1. The new SERS/RRS indicator reaction in combination with specific aptamer (Apt) to fabricate a sensitive and selective Au@MOFZn catalytic amplification-aptamer SERS/RRS assay platform for carbendazim (CBZ), with SERS/RRS linear range of 0.025-0.5 ng/mL. The detection limit was 0.02 ng/mL. Similarly, this assay platform has been also utilized to detect oxytetracycline (OTC) and profenofos (PF).

Analysis of Wall Blackening Reason in Ceramic Metal Halide Lamp by Shape of Arc-tube and Degradation Condition (방전관 형태 및 열화 조건에 따른 세라믹 메탈할라이드 램프의 흑화원인 분석)

  • Kim, Woo-Young;Lee, Se-Il;Yang, Jong-Kyung;Jeong, Young-Gi;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2262-2267
    • /
    • 2010
  • In order to analyze the reason of wall blackening, which affect the decline of lifetime in a ceramic metal halide lamp, we carried out the deterioration of ceramic tubes by a change in operating conditions with arc tubes of two types of spherical and cylindrical, and we have confirmed the cause of wall blackening through the analysis of element composition and spectrum from SEM/EDS and spectrum analyzer. Wall blackening of tungsten was shown by sputtering from ignition in 20 minute on/off condition and wall blackening from chemical reaction between PCA wall and rare earth halides was shown significantly in a condition without on/off test. Especially, the wall blackening and the decline of luminous flux were reduced by inner convection in spherical type arc tube. Moreover, the color temperature and color coordinate were changed by reduction of emission spectrum of Dy which causes the chemical reaction with PCA wall.

Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Chan Bock;Cheon, Jin Sik;Kim, Sung Ho;Park, Jeong-Yong;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1096-1108
    • /
    • 2016
  • Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U-transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

Progress in the co-evaporation technologies developed for high performance REBa2Cu3O7-δ films and coated conductors

  • Lee, J.W.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • In this review article, we focus on various co-evaporation technologies developed for the fabrication of high performance $REBa_2Cu_3O_{7-{\delta}}$ (RE: Y and Rare earth elements, REBCO) superconducting films. Compared with other manufacturing technologies for REBCO films such as sputtering, pulsed laser deposition (PLD), metal-organic deposition (MOD), and metal organic chemical vapor deposition (MOCVD), the co-evaporation method has a strong advantage of higher deposition rate because metal sources can be used as precursor materials. After the first attempt to produce REBCO films by the co-evaporation method in 1987, various co-evaporation technologies for high performance REBCO films have been developed during last several decades. The key points of each co-evaporation technology are reviewed in this article, which enables us to have a good insight into a new high throughput process, called as a Reactive Co-Evaporation by Deposition and Reaction (RCE-DR).

Gastric cancer presenting with ramucirumab-related gastrocolic fistula successfully managed by colonic stenting: a case report

  • Hiroki Fukuya;Yoichiro Iboshi;Masafumi Wada;Yorinobu Sumida;Naohiko Harada;Makoto Nakamuta;Hiroyuki Fujii;Eikichi Ihara
    • Clinical Endoscopy
    • /
    • v.56 no.6
    • /
    • pp.812-816
    • /
    • 2023
  • We report a rare case of gastric cancer presenting with a gastrocolic fistula during ramucirumab and paclitaxel combination therapy that was successfully managed with colonic stenting. A 75-year-old man was admitted to our hospital with the chief complaint of melena. Esophagogastroduodenoscopy revealed a large ulcerated tumor in the lower stomach, judged by laparoscopy as unresectable (sT4bN1M0). After four cycles of first-line chemotherapy with S-1 plus oxaliplatin, the patient showed disease progression, and second-line therapy with ramucirumab and paclitaxel was started. At the end of the third cycle, the patient had gastric antral stenosis, which necessitated the placement of a gastroduodenal stent. When the patient complained of diarrhea 10 days later, esophagogastroduodenoscopy revealed a fistula between the greater curvature of the stomach and the transverse colon. The fistula was covered by double colonic stenting, with a covered metal stent placed within an uncovered metal stent, after which leakage from the stomach to the colon stopped.

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Solvent Extraction for the Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) from 3 M Hydrochloric Acid Solution (3 M의 염산용액에서 팔라듐(II), 백금(IV), 이리듐(IV) 및 로듐(III)의 분리를 위한 용매추출)

  • Nguyen, Thi Hong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.26-31
    • /
    • 2017
  • LIX 63 showed a selectivity for the extraction of Pd(II) over other PGMs, such as Pt(IV), Ir(IV) and Rh(III) from 6 M HCl solution. Moreover, HCl solution has significant effect on the oxidation-reduction reaction between Ir(IV) and LIX 63. Therefore, the applicability of employing LIX 63 for the separation of the 4 PGMs was investigated from 3 M HCl solution. From 3 M HCl solution, only Pd(II) was selectively extracted by LIX 63 and its extraction percentage was higher than from 6 M HCl solution. Extraction of the Pd(II) free raffinate with TBP led to the selective extraction of Pt(IV). After oxidation of Ir(III) with $NaClO_3$ to Ir(IV), extraction of the Pt(IV) free raffinate with Aliquat 336 selectively extracted Ir(IV). For each extraction step, optimum stripping conditions were obtained. By this process, it was possible to separate the 4 PGMs by solvent extraction from 3 M HCl solution.