• Title/Summary/Keyword: Rare Earth

Search Result 974, Processing Time 0.025 seconds

Electronic structure studies of CoFeRO (R=Hf,La,Nb) thin films by X-ray absorption spectroscopy

  • Song, J.H.;Gautam, S.;Chae, K.H.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.378-378
    • /
    • 2010
  • We report the electronic structure of CoFeO-R (R=Hf, La, Nb) thin films studied by x-ray absorption spectroscopy (XAS). These ferrites thin films were prepared by pulsed laser deposition method and characterized by XAS measurements at O K-, Co and Fe L-edges. The O K-edge spectra suggest that there is a strong hybridization between O 2p and 3d electrons of transition metal cations and Fe $L_{3,2}$-edge spectra indicate that Fe-ions exist in $Fe^{2+}$ with tetrahedral site of the spinel structure. Divalent Co ions is also distributed in tetrahedral site with rare earth ions goes to octahedral sites of spinel structure. X-ray magnetic circular dichroism (XMCD) is also used to explain the symmetry and magnetic nature dependence on rare-earth ions.

  • PDF

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R.;Pikul, V.P.;Mukhamedshina, N.M.;Sandalov, V.N.;Kudiratov, S.;Ibragimova, E.M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.

Anthropogenic Gadolinium (Gd) Inputs into the Ocean: Review and Future Direction (인위적 기원 가돌리늄(gadolinium)의 해양 유입 연구 동향 및 향후 연구 방향)

  • Kim, Intae
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.165-178
    • /
    • 2021
  • Gadolinium (Gd), one of a rare earth element (REE), has been widely used worldwide since the 1980s, as a resource material for contrast agents injected into examiners of magnetic resonance imaging (MRI) test. The organic complexed form of Gd shows an extremely stable behavior in natural environment (water), so is known that the artificial Gd from medical uses is not removed from the waste water treatment plant (WWTP) and eventually introduced into the ocean through the estuary. Since the 1990s, some previous studies have often been conducted on Gd anomalies in natural water and their effects an artificial origin from land or metropolitan areas, but little research has been potential impacts on the ocean water. In this paper, we review and introduce recent studies related to Gd anomaly in natural water and related marine effects, and also propose the future research directions.

EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions

  • Ravi, Seenu;Zhang, Siqian;Lee, Yu-Ri;Kang, Kyoung-Ku;Kim, Ji-Man;Ahn, Ji-Whan;Ahn, Wha-Seung
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.210-218
    • /
    • 2018
  • Ethylenediaminetetraacetic acid (EDTA)-functionalized KIT-6 and KCC-1 mesoporous silicas were prepared via post-synthesis grafting and examined for their ability to promote the recovery of rare earth metal ions such as $Nd^{3+}$ from an aqueous medium. The obtained adsorption isotherms were fitted to the Langmuir model, which gave a maximum adsorption of $Nd^{3+}$ ions of 109.8 and 96.5 mg/g for KIT-6-EDTA and KCC-1-EDTA, respectively, at $25^{\circ}C$ and pH 6. The adsorption kinetic profile of KIT-6 was faster than KCC-1. KIT-6 was also proved to be more stable against desorption under acidic regeneration conditions.

Spectrophotometric Determination of Rare Earths by Ternary Complex Formation with MTB and Surfactant (글로방전 발광분광법에 의한 란탄족 원소의 정밀 분석. MTB와 계면활성제의 삼성분 착물 형성에 의한 희토류 원소의 분광광도법 정량에 관한 연구)

  • Cha Ki-Won;Yun Jeong-Sook;Kim Kyung-Hwan;Ha Young-Gu;Kim Ha-Suek
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.496-502
    • /
    • 1993
  • Spectrophotometric determination of rare earth elements with MTB and the composition ratio were investigated in the presence of surfactants of cetylpyridinium chloride (CPC), Triton X-100, dodecyltrimethylammonium bromide (DTMAB) and cetyltrimethylammonium bromide (CTMAB) at pH 6.5. The colour development between MTB and rare earths in the presence of cationic surfactants was very stable and more sensitive than that in the absence of surfactants. The largest absorbance increase was provided by CPC, which was therefore chosen for determination of rare earth elements. REE-MTB-CPC complex has absorption maxima at 650 nm and obeys the Beer's law in the range of 0∼100 ng/ml. Molar absorptivity is $6.6{\sim}9.4{\times}10^4\;mol^{-1}l\;cm^{-1}$.

  • PDF