DOI QR코드

DOI QR Code

EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions

  • Ravi, Seenu (Department of Chemical Engineering, Inha University) ;
  • Zhang, Siqian (Department of Chemical Engineering, Inha University) ;
  • Lee, Yu-Ri (Department of Chemical Engineering, Inha University) ;
  • Kang, Kyoung-Ku (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Ji-Man (Department of Chemistry, Sungkyunkwan University) ;
  • Ahn, Ji-Whan (Korea Institute of Geoscience and Mineral Resource (KIGAM)) ;
  • Ahn, Wha-Seung (Department of Chemical Engineering, Inha University)
  • Received : 2018.04.17
  • Accepted : 2018.06.24
  • Published : 2018.11.25

Abstract

Ethylenediaminetetraacetic acid (EDTA)-functionalized KIT-6 and KCC-1 mesoporous silicas were prepared via post-synthesis grafting and examined for their ability to promote the recovery of rare earth metal ions such as $Nd^{3+}$ from an aqueous medium. The obtained adsorption isotherms were fitted to the Langmuir model, which gave a maximum adsorption of $Nd^{3+}$ ions of 109.8 and 96.5 mg/g for KIT-6-EDTA and KCC-1-EDTA, respectively, at $25^{\circ}C$ and pH 6. The adsorption kinetic profile of KIT-6 was faster than KCC-1. KIT-6 was also proved to be more stable against desorption under acidic regeneration conditions.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. G.A. Moldoveanu, V.G. Papangelakis, Hydrometallurgy 117-118 (2012) 71. https://doi.org/10.1016/j.hydromet.2012.02.007
  2. M. Tian, N. Song, D. Wang, X. Quan, Q. Jia, W. Liao, L. Lin, Hydrometallurgy 111-112 (2012) 109. https://doi.org/10.1016/j.hydromet.2011.11.002
  3. T. Kakoi, T. Nishiyori, T. Oshima, F. Kubota, M. Goto, S. Shinkai, F. Nakashio, J. Membr. Sci. 136 (1997) 261. https://doi.org/10.1016/S0376-7388(97)00173-7
  4. A. Sengupta, P.K. Mohapatra, A.B. Patil, R.M. Kadam, W. Verboom, Sep. Purif. Technol. 162 (2016) 77. https://doi.org/10.1016/j.seppur.2016.02.017
  5. F. Xie, T.A. Zhang, D. Dreisinger, F. Doyle, Miner. Eng. 56 (2014) 10. https://doi.org/10.1016/j.mineng.2013.10.021
  6. S. Yang, P. Zong, X. Ren, Q. Wang, X. Wang, ACS Appl. Mater. Interfaces 4 (2012) 6891. https://doi.org/10.1021/am3020372
  7. H. Vojoudi, A. Badiei, A. Amiri, A. Banaei, G.M. Ziarani, K. Schenk-JoB, Food Chem. 257 (2018) 189. https://doi.org/10.1016/j.foodchem.2018.02.126
  8. H. Vojoudi, A. Badiei, S. Bahar, G. Mohammadi Ziarani, F. Faridbod, M.R. Ganjali, Powder Technol. 319 (2017) 271. https://doi.org/10.1016/j.powtec.2017.06.028
  9. F. Wang, J. Zhao, F. Pan, H. Zhou, X. Yang, W. Li, H. Liu, Ind. Eng. Chem. Res. 52 (2013) 3453. https://doi.org/10.1021/ie302753q
  10. F. Zhao, E. Repo, Y. Meng, X. Wang, D. Yin, M. Sillanpaa, J. Colloid Interface Sci. 465 (2016) 215. https://doi.org/10.1016/j.jcis.2015.11.069
  11. X. Yang, J. Zhang, X. Fang, J. Hazard. Mater. 279 (2014) 384. https://doi.org/10.1016/j.jhazmat.2014.07.027
  12. I. Anastopoulos, A. Bhatnagar, E.C. Lima, J. Mol. Liq. 221 (2016) 954. https://doi.org/10.1016/j.molliq.2016.06.076
  13. W. Yantasee, G.E. Fryxell, R.S. Addleman, R.J. Wiacek, V. Koonsiripaiboon, K. Pattamakomsan, V. Sukwarotwat, J. Xu, K.N. Raymond, J. Hazard. Mater. 168 (2009) 1233. https://doi.org/10.1016/j.jhazmat.2009.03.004
  14. M.R. Awual, T. Kobayashi, H. Shiwaku, Y. Miyazaki, R. Motokawa, S. Suzuki, Y. Okamoto, T. Yaita, Chem. Eng. J. 225 (2013) 558. https://doi.org/10.1016/j.cej.2013.04.015
  15. S. Schneider, A. Caldas Garcez, M. Tremblay, F. Bilodeau, D. Lariviere, F. Kleitz, New J. Chem. 37 (2013) 3877. https://doi.org/10.1039/c3nj01236k
  16. Y. Zhao, J. Li, S. Zhang, X. Wang, RSC Adv. 4 (2014) 32710. https://doi.org/10.1039/C4RA05128A
  17. X. Zhao, M. Wong, C. Mao, T.X. Trieu, J. Zhang, P. Feng, X. Bu, J. Am. Chem. Soc. 136 (2014) 12572. https://doi.org/10.1021/ja5067306
  18. B.-C. Luo, L.-Y. Yuan, Z.-F. Chai, W.-Q. Shi, Q. Tang, J. Radioanal. Nucl. Chem. 307 (2016) 269. https://doi.org/10.1007/s10967-015-4108-3
  19. M.-R. Huang, H.-J. Lu, X.-G. Li, J. Mater. Chem. 22 (2012) 17685. https://doi.org/10.1039/c2jm32361c
  20. C. Han, L. Zhang, H. Li, Chem. Commun. (2009) 3545.
  21. A.R. Elsalamouny, O.A. Desouky, S.A. Mohamed, A.A. Galhoum, E. Guibal, Int. J. Biol. Macromol. 104 (2017) 963. https://doi.org/10.1016/j.ijbiomac.2017.06.081
  22. A.A. Galhoum, M.G. Mahfouz, S.T. Abdel-Rehem, N.A. Gomaa, A.A. Atia, T. Vincent, E. Guibal, Cellulose 22 (2015) 2589. https://doi.org/10.1007/s10570-015-0677-0
  23. S. Li, Y. Chen, X. Pei, S. Zhang, X. Feng, J. Zhou, B. Wang, Chin. J. Chem. 34 (2016) 175. https://doi.org/10.1002/cjoc.201500761
  24. J. Roosen, J. Spooren, K. Binnemans, J. Mater. Chem. A 2 (2014) 19415. https://doi.org/10.1039/C4TA04518A
  25. S. Ravi, Y.-R. Lee, K. Yu, J.-W. Ahn, W.-S. Ahn, Microporous Mesoporous Mater. 258 (2018) 62. https://doi.org/10.1016/j.micromeso.2017.09.006
  26. A.A. Naser, G.E.S. El-deen, A.A. Bhran, S.S. Metwally, A.M. El-Kamash, J. Ind. Eng. Chem. 32 (2015) 264. https://doi.org/10.1016/j.jiec.2015.08.024
  27. I.V. Melnyk, V.P. Goncharyk, L.I. Kozhara, G.R. Yurchenko, A.K. Matkovsky, Y.L. Zub, B. Alonso, Microporous Mesoporous Mater. 153 (2012) 171. https://doi.org/10.1016/j.micromeso.2011.12.027
  28. T. Ogata, H. Narita, M. Tanaka, Hydrometallurgy 152 (2015) 178. https://doi.org/10.1016/j.hydromet.2015.01.005
  29. E. Polido Legaria, S.D. Topel, V.G. Kessler, G.A. Seisenbaeva, Dalton Trans. 44 (2015) 1273. https://doi.org/10.1039/C4DT03096F
  30. W. Peng, H. Li, Y. Liu, S. Song, J. Mol. Liq. 230 (2017) 496. https://doi.org/10.1016/j.molliq.2017.01.064
  31. F. Kleitz, S. Hei Choi, R. Ryoo, Chem. Commun. (2003) 2136.
  32. F. Kleitz, F. Berube, R. Guillet-Nicolas, C.-M. Yang, M. Thommes, J. Phys. Chem. C 114 (2010) 9344. https://doi.org/10.1021/jp909836v
  33. A. Fihri, M. Bouhrara, U. Patil, D. Cha, Y. Saih, V. Polshettiwar, ACS Catal. 2 (2012) 1425. https://doi.org/10.1021/cs300179q
  34. M. Bouhrara, C. Ranga, A. Fihri, R.R. Shaikh, P. Sarawade, A.-H. Emwas, M.N. Hedhili, V. Polshettiwar, ACS Sustain. Chem. Eng. 1 (2013) 1192. https://doi.org/10.1021/sc400126h
  35. V. Polshettiwar, D. Cha, X. Zhang, J.M. Basset, Angew. Chem. Int. Ed. 49 (2010) 9652. https://doi.org/10.1002/anie.201003451
  36. L. Sarkisov, P.A. Monson, Langmuir 17 (2001) 7600. https://doi.org/10.1021/la015521u
  37. J. Tu, N. Li, W. Geng, R. Wang, X. Lai, Y. Cao, T. Zhang, X. Li, S. Qiu, Sens. Actuators B: Chem. 166-167 (2012) 658. https://doi.org/10.1016/j.snb.2012.03.033
  38. S. Ravi, M. Selvaraj, H. Park, H.-H. Chun, C.-S. Ha, New J. Chem. 38 (2014) 3899. https://doi.org/10.1039/C4NJ00418C
  39. S. Ravi, Y.-R. Lee, K. Yu, J.-W. Ahn, W.-S. Ahn, Microporous Mesoporous Mater. 258 (2018) 62. https://doi.org/10.1016/j.micromeso.2017.09.006
  40. R. Kumar, M.A. Barakat, Y.A. Daza, H.L. Woodcock, J.N. Kuhn, J. Colloid Interface Sci. 408 (2013) 200. https://doi.org/10.1016/j.jcis.2013.07.019
  41. H. Vojoudi, A. Badiei, A. Amiri, A. Banaei, G.M. Ziarani, K. Schenk-JoB, J. Phys. Chem. Solids 113 (2018) 210. https://doi.org/10.1016/j.jpcs.2017.10.029
  42. J. Shalini, K.J. Sankaran, C.-L. Dong, C.-Y. Lee, N.-H. Tai, I.N. Lin, Nanoscale 5 (2013) 1159. https://doi.org/10.1039/c2nr32939e
  43. S. Ravi, P. Puthiaraj, K.H. Row, D.-W. Park, W.-S. Ahn, Ind. Eng. Chem. Res. 56 (2017) 10174. https://doi.org/10.1021/acs.iecr.7b02743
  44. Z. Chen, S. Pronkin, T.-P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J.M. Thomas, J. Perez-Ramirez, M. Antonietti, D. Dontsova, ACS Nano 10 (2016) 3166. https://doi.org/10.1021/acsnano.5b04210
  45. S. Ravi, P. Puthiaraj, W.-S. Ahn, J. $CO_2$ Util. 21 (2017) 450.
  46. I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361. https://doi.org/10.1021/ja02242a004
  47. S. Aytas, M. Yurtlu, R. Donat, J. Hazard. Mater. 172 (2009) 667. https://doi.org/10.1016/j.jhazmat.2009.07.049
  48. Q. Lu, Y. Ma, H. Li, X. Guan, Y. Yusran, M. Xue, Q. Fang, Y. Yan, S. Qiu, V. Valtchev, Angew. Chem. Int. Ed. 57 (2018) 6042. https://doi.org/10.1002/anie.201712246
  49. F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Chem. Eng. J. 151 (2009) 1. https://doi.org/10.1016/j.cej.2009.02.024
  50. Y.S. Ho, G. McKay, J. Environ. Sci. Health A 34 (1999) 1179. https://doi.org/10.1080/10934529909376889
  51. M. Sillanpaa, R. Kokkonen, M.-L. Sihvonen, Anal. Chim. Acta 303 (1995) 187. https://doi.org/10.1016/0003-2670(94)00535-T
  52. R. Kumar, M.A. Barakat, Y.A. Daza, H.L. Woodcock, J.N. Kuhn, J. Colloid Interface Sci. 408 (2013) 200. https://doi.org/10.1016/j.jcis.2013.07.019
  53. S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev. 114 (2014) 2343. https://doi.org/10.1021/cr4001594

Cited by

  1. Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials vol.7, pp.10, 2018, https://doi.org/10.1039/c8ta09815h
  2. Porous Covalent Organic Polymers Comprising a Phosphite Skeleton for Aqueous Nd(III) Capture vol.11, pp.12, 2018, https://doi.org/10.1021/acsami.9b00546
  3. Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach vol.9, pp.43, 2018, https://doi.org/10.1039/c9ra04845f
  4. EDTA-Functionalized Covalent Organic Framework for the Removal of Heavy-Metal Ions vol.11, pp.35, 2018, https://doi.org/10.1021/acsami.9b11850
  5. Removal of Mercury (II) by EDTA-Functionalized Magnetic CoFe2O4@SiO2 Nanomaterial with Core-Shell Structure vol.9, pp.11, 2018, https://doi.org/10.3390/nano9111532
  6. Comparison of Cadmium Cd2+ and Lead Pb2+ Binding by Fe2O3@SiO2‐EDTA Nanoparticles – Binding Stability and Kinetic Studies vol.32, pp.3, 2018, https://doi.org/10.1002/elan.201900616
  7. Development of a mesoporous silica based solid‐phase extraction and ultra‐performance liquid chromatography–MS/MS method for quantifying lignans in Justicia procumbens vol.41, pp.5, 2020, https://doi.org/10.1002/elps.201900401
  8. Photochemical Functionalization of Graphene Oxide by Thiol-Ene Click Chemistry vol.59, pp.29, 2018, https://doi.org/10.1021/acs.iecr.0c01252
  9. Adhesive Sponge Based on Supramolecular Dimer Interactions as Scaffolds for Neural Stem Cells vol.21, pp.8, 2018, https://doi.org/10.1021/acs.biomac.0c00825
  10. Role of the Metal Surface on the Room Temperature Activation of the Alcohol and Amino Groups of p-Aminophenol vol.124, pp.36, 2020, https://doi.org/10.1021/acs.jpcc.0c06101
  11. Simultaneous extraction of permethrin diastereomers and deltamethrin in environmental water samples based on aperture regulated magnetic mesoporous silica vol.44, pp.37, 2020, https://doi.org/10.1039/d0nj01634a
  12. CO2 Hydrogenation to Formate by Palladium Nanoparticles Supported on N-Incorporated Periodic Mesoporous Organosilica vol.8, pp.39, 2018, https://doi.org/10.1021/acssuschemeng.0c03860
  13. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications vol.93, pp.12, 2018, https://doi.org/10.1246/bcsj.20200136
  14. Synthesis of well-defined molecularly imprinted bulk polymers for the removal of azo dyes from water resources vol.4, pp.None, 2018, https://doi.org/10.1016/j.crgsc.2021.100196
  15. Aluminum-Based Surface Polymerization on Carbon Dots with Aggregation-Enhanced Luminescence vol.12, pp.None, 2018, https://doi.org/10.1021/acs.jpclett.1c01240
  16. Three-Dimensional Graphene Oxide Covalently Functionalized with Dawson-Type Polyoxotungstates for Oxidative Desulfurization of Model Fuels vol.60, pp.1, 2021, https://doi.org/10.1021/acs.iecr.0c04384
  17. Nd(III) and Gd(III) Sorption on Mesoporous Amine-Functionalized Polymer/SiO2 Composite vol.26, pp.4, 2018, https://doi.org/10.3390/molecules26041049
  18. Model Studies on the Formation of the Solid Electrolyte Interphase: Reaction of Li with Ultrathin Adsorbed Ionic‐Liquid Films and Co3O4(111) Thin Films vol.22, pp.5, 2021, https://doi.org/10.1002/cphc.202001033
  19. Aqueous Nd3+ capture using a carboxyl-functionalized porous carbon derived from ZIF-8 vol.594, pp.None, 2018, https://doi.org/10.1016/j.jcis.2021.03.036
  20. Removal of copper ions by functionalized biochar based on a multicomponent Ugi reaction vol.11, pp.42, 2018, https://doi.org/10.1039/d1ra04156h
  21. Influence of deposited amine‐functionalized Si‐MCM‐41 in polyacrylonitrile electrospun membranes applied for separation of water in oil emulsions vol.138, pp.30, 2021, https://doi.org/10.1002/app.50737
  22. Wet or dry multifunctional coating prepared by visible light polymerisation with fire retardant, thermal protective, and antimicrobial properties vol.28, pp.13, 2021, https://doi.org/10.1007/s10570-021-04095-z
  23. Methane dry reforming over Ni/fibrous SBA-15 catalysts: Effects of support morphology (rod-liked F-SBA-15 and dendritic DFSBA-15) vol.375, pp.None, 2021, https://doi.org/10.1016/j.cattod.2020.06.073
  24. Suppressing Defect Formation in Metal-Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations vol.13, pp.35, 2018, https://doi.org/10.1021/acsami.1c13134
  25. Poly(amidoamine) dendrimer decorated dendritic fibrous nano-silica for efficient removal of uranium (VI) vol.303, pp.None, 2021, https://doi.org/10.1016/j.jssc.2021.122511
  26. Novel phosphonate-functionalized composite sorbent for the recovery of lanthanum(III) and terbium(III) from synthetic solutions and ore leachate vol.424, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.130500
  27. Removal of heavy metals by surface tailored copper ion enhanced ceramic-supported-polymeric composite nanofiltration membrane vol.9, pp.6, 2018, https://doi.org/10.1016/j.jece.2021.106368
  28. A hybrid Zr/amine-modified mesoporous silica for adsorption and preconcentration of as before its FI HG AAS determination in water vol.328, pp.None, 2021, https://doi.org/10.1016/j.micromeso.2021.111484
  29. Supported copper on a diamide-diacid-bridged PMO: an efficient hybrid catalyst for the cascade oxidation of benzyl alcohols/Knoevenagel condensation vol.12, pp.1, 2022, https://doi.org/10.1039/d1ra06509b
  30. Recent advances in selective separation technologies of rare earth elements: a review vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.107104
  31. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage vol.424, pp.no.pc, 2018, https://doi.org/10.1016/j.jhazmat.2021.127625
  32. A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal vol.285, pp.None, 2018, https://doi.org/10.1016/j.seppur.2021.120376