• Title/Summary/Keyword: Rare Earth

Search Result 974, Processing Time 0.024 seconds

Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles (나노 연/경자성 분말 재료를 이용한 Exchange-coupling 자석의 제조 기술)

  • Kim, Jong-Ryoul;Cho, Sang-Geun;Jeon, Kwang-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.225-230
    • /
    • 2011
  • Magnetic materials has been applied to various fields due to their energy convertible properties between electrical and mechanical energy. Particularly, permanent magnets have been currently attracted much attention because they produce external magnetic field without any electrical current. For high efficiency, a demand for permanent magnets containing rare earth elements has been continuously increased, which abruptly raises the price and causes the supply difficulty of rare earth materials. Therefore, the development of permanent magnets with less or without rare earth elements become a urgent issue. In this report, the current trend and major issues on high efficiency permanent magnets, particularly exchange-coupling magnets, are discussed.

Formation of Phases and Mechanical Properties of YSZ-Based Thermal Barrier Coating Materials Doped with Rare Earth Oxides (희토류 산화물이 첨가된 YSZ 기반의 열차폐 코팅용 소재의 상 형성 및 기계적 특성)

  • Yong Seok Choi;Gye Won Lee;Sahn Nahm;Yoon suk Oh
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.402-408
    • /
    • 2023
  • This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan;Aleksandar N. Nikoloski;Parisa A. Bahri;Dan Li
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 2024
  • In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

Effects of Rare Earth Supplementation on Growth Performance, Blood Immune-Related Cell Population, Meat Quality and Fecal Odor Emission Gases in Finishing Pigs (사료내 희토 첨가가 비육돈의 생산성, 혈액내 면역관련 세포수, 육질특성 및 분 중 악취방출 가스함량에 미치는 영향)

  • Shin, Seung-Oh;Yoo, Jong0Sang;Lee, Je0Hyun;Jang, Hae0Dong;Kim, Hyo0Jin;Huang, Yan;Chen, Ying-Jie;Cho, Jin-Ho;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.485-498
    • /
    • 2008
  • This study was conducted to evaluate effects of dietary rare earth on growth performance, blood immune- related cell population, meat quality and fecal odor emitting gases in finishing pigs. The total of sixty four (Landrace×Yorkshire×Duroc) pigs(65.42±1.16kg in average initial body weight) were used for feeding trial during 10 weeks of experimental period. Dietary treatments included 1) NC(antibiotic free diet), 2) PC (NC diet+6 weeks 44ppm of tylosin/ 4 weeks 22ppm of tylosin) 3) RE1 (NC diet + 100ppm of RE), 4) RE2 (NC diet+200ppm of RE). There were four dietary treatments with four replicate pens per treatment and four pigs per pen. During the overall periods, there were no significant differences in ADG(Average daily gain), ADFI (Average daily feed intake) and gain/feed ratio among treatments(P>0.05). Dry matter and nitrogen digestibility were higher in RE2 treatment group than other groups(P<0.05). Also, energy digestibility was higher in RE2 treatment group than PC and RE1 treatment groups(P<0.05). At the 6th week WBC(white blood cell) was significantly increased(P<0.05) in RE1 treatment group than NC and RE2 treatment groups. L* value of M. logissimus dorsi muscle color was significantly increased(P<0.05) in rare earth supplemented groups compared to NC treatment group(P<0.05). However, a* value was lower in RE1 treatment group than PC treatment group (P<0.05). In fatty acid composition of Intramuscular fat, total MUFA was significantly higher in RE2 treatment group than other groups(P<0.05). Also, total UFA was significantly increased in RE2 treatment group compared with NC and PC treatment groups(P<0.05). In fatty acid composition of back fats, total SFA of rare earth supplemented groups were lower than in PC treatment group(P<0.05). UFA:SFA ratio was significantly higher in rare earth supplemented groups than PC treatment group(P<0.05). In fecal odor emission, NH3 was significantly decreased(P<0.05) in rare earth supplemented groups compared to NC and PC treatment groups. In conclusion, the results of the experiment was affected by rare earth supplementation on digestibilities, meat quality, fatty acid and fecal odor emission gases in finishing pigs.

Fusion technology of artifacts considering environmental recycling for sustainability

  • Fujita Toyohisa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.563-568
    • /
    • 2003
  • Recently, the recycled amount of electric, mechanical parts, and appliances in artifacts has increased. These products use valuable rare metals such as platinum group metals and gold, which are included occasionally as additives. Rare metals are maldistributed in the world and most of them are produced in small quantities. A small amount of rare metals used in the appliances causes a large loss of rare metal resources because of the lack of an economically recycling method. The present recycling technologies including physical and chemical separation methods that are considered for recycling of electric, mechanical parts and appliances.

  • PDF

Study of Synthesis and Property of Eu-PEG Phase Change Luminescent Materials (Eu-PEG로 구성된 상변환 발광재료의 합성 및 물성에 대한 연구)

  • Gu, Xiao-Hua;Xi, Peng;Shen, Xin-Yuan;Cheng, Bo-Wen
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • A novel TPC-PEG-TPC with active end-groups was obtained from the end-groups of polyethylene glycol (PEG) modified by terephthaloyl chloride (TPC). These active end-groups can link up with a rare earth ion, which is a luminescent center of a rare earth fluorescent complex. Complexes of Eu-PEG with novel ligands (TPC-PEG-PTC) were synthesized by the coordination of the active reactant (as the first ligand) and phenanthroline (as the second ligand) with $Eu^{3+}$.IR, $^1H$-NMR, element analysis, DSC, WAXD, fluorescent spectroscopy, TGA, and SEM were used to characterize the structure and properties of these complexes. The results showed that this type of complex is a heat storage material with the phase change character of polyethylene glycol (PEG) and the luminescent properties of europium. There was no thermal decomposition of the complex of Eu-PEG until $300^{\circ}C$. SEM showed that the complex of Eu-PEG can be dispersed in PE.

Optimized Design of Rotor Considering Cost-Reduction of Small BLDC Motor for the Water Pump (펌프용 소형 BLDC 모터의 원가절감을 고려한 회전자 최적화 설계)

  • Kim, Hoe-Cheon;Jung, Tae-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.495-501
    • /
    • 2013
  • In the present study, a BLDC motor for a pump in which a neodymium PM is replaced with a Ferrite PM has been developed in preparation for the cost increase and to ensure the stability of the resource supply. One of the currently used motors for pumps is a BLDC motor having an interior PM wherein a rare-earth PM is adopted. However, a BLDC motor for a pump is designed to have large airgap because of the use of a waterproof insulator according to its structural characteristics, and therefore, a SPM structure is suitable. Hence, an SPM BLDC motor in which a Ferrite PM is used is designed. Nevertheless, the use of Ferrite instead of rare-earth materials causes a deterioration in the performance of the electric motor, such as a decrease in the BEMF and the maximum power of the motor and the irreversible demagnetization of the PM. In order to mitigate such disadvantages, an optimized design of the BLDC motor is developed by changing each design parameter and by improving the electromagnetism structure.

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

A Preliminary Geochemical Study on the Khaldzan-Buregtei Pegmatite, Western Mongolia (몽골 서부 할잔-부룩테이 페그마타이트에 대한 지화학적 예비 연구)

  • Pak, Sang-Joon;Heo, Chul-Ho;Kim, You-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.261-269
    • /
    • 2008
  • A NYF-type (Nb-Y-Zr-F) Khaldzan-Buregtei pegmatite containing rare-earth metals occurs within alkali granitoid complex of the western Mongolia. The pegmatites are considered as differentiates of syenites and alkali feldpar granitic rocks, showing that their rare-earth element concentrations are enriched tens times higher than those from the adjacent alkali granitic rocks. It is suggested that econemic aspects of the pegmatites can be controlled by the magnitude of lateral and vertical extensions and local grade variation of REE-bearing pegmatites.

Design of a Switched Reluctance Motor Driving an Electric Compressor for HEVs (하이브리드 자동차(HEV) 용 전동식 컴프레서 구동을 위한 SRM 설계)

  • Jeong, Yong-Hoe;Jeon, Yong-Hee;Kang, Jun-Ho;Kim, Jaehyuck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.620-625
    • /
    • 2013
  • This paper presents the design of a switched reluctance motor (SRM) for electric air conditioning compressors which are applied to hybrid electric vehicles (EVs). The motor for driving air conditioning compressor which is recently used on EV(electric vehicle) / HEV (hybrid electric vehicle) is PMSM(permanent magnet synchronous motor) or BLDCM(brushless DC motor). However disadvantage of motors that uses permanent magnets are vulnerable to high temperatures because of the demagnetization by the high temperature and the permanent magnet is expensive because of the high price of rare earth materials from China's monopoly. Therefore, in the automotive insustry is interested in the non-rare-earth motors. SRM has many advantages. it's resistant to high temperatures, price is cheaper, because there are no permanent magnets and winding in the rotor. Also it's high relability and efficiency, suitable for high-speed operation because of structure is simple. In this paper, the SRM, non-rare-earth motor, are designed, analyzed and experimented drive to replace an existing electric compressor drive motor.