• Title/Summary/Keyword: Rapidly solidified process

Search Result 64, Processing Time 0.022 seconds

Effects of Mechanical Alloying Treatment on Age Hardening Behavior of Rapidly Solidified Al-5Cr-2Zr Alloy (급속냉각한 Al-5Cr-2Zr 합금의 시효경화에 미치는 기계적 합금화 처리효과)

  • 김완철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.29-35
    • /
    • 1994
  • The microstructual refinement process of Al-5Cr-2Zr alloys mechanical alloying 30h can be divided in five stages ; initial stage, welding predomminance stage, spherical partical formation stage, convolution welding predominance stage, and steady state. The rate of structural of aluminium splats was roughly logarithmic with processing time ; ${\in}$=k/0.78 ln(1+0.0028t). The age hardening in rapidly solidified Al-5Cr-2Zr alloys is ascribed to the coherency and dispersion hardening. Coherency hardening is occurred by matastable cubic Al3Zr precipitates in Al-Cr-Zr alloys. Dispersion hardening after mechanical alloying is attributed to the finely-dispersed $Al_2O_3$ and $Al_4C_3$ in Al-5Cr-2Zr alloys.

  • PDF

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

Characteristics of PZT Powders Synthesized by Hydrothermal Process (수열합성법으로 제조된 PZT 분말의 특성)

  • Yang, Beom-Seok;Lee, Huk-Hee;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.516-520
    • /
    • 2005
  • Conditions for formation of perovskite Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_{3}$ phase by the hydrothermal synthesis are investigated. Pb(Zr$_{0.52}$ Ti$_{0.48}$)O$_{3}$ ceramics were synthesized by hydrothermal process above 180$^{\circ}C$ for 2 h reaction using 5$\~$30 M KOH solution as a mineralizer. Particle size increases in proportion to the mineralizer concentration. As a result of EOX analysis, PZT powders synthesized using 50 M of KOH as a mineralizer were considered as 2.42 mol$\%$ K doped-PZT powders. And 2.42 mol$\%$ K doped-PZT has much higher mechanical quality factor than undoped PZT ceramics. The sintering properties showed 7.987 g/cm$^{3}$ of sintered density and 3$\~$4 $\mu$m of grain size.

Development of High Strength Mg-Zn-Gd Alloys by Rapid Solidification Processing

  • Kim, Min-Chul;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1048-1049
    • /
    • 2006
  • Rapidly solidified ribbon-consolidation processing was applied for preparation of high strength bulk Mg-Zn-Gd alloys. Mg alloys have been used in automotive and aerospace industries. Rapid solidification (RS) process is suitable for the development of high strength Mg alloys, because the process realizes grain-refinement, increase in homogeneity, and so on. Recently, several nanocrystalline Mg-Zn-Y alloys with high specific tensile strength and large elongation have been developed by rapidly solidified powder metallurgy (RS P/M) process. Mg-Zn-Y RS P/M alloys are characterized by long period ordered (LPO) structure and sub-micron fine grains. The both additions of rare earth elements and zinc remarkably improved the mechanical properties of RS Mg alloys. Mg-Zn-Gd alloy also forms LPO structure in -Mg matrix coherently, therefore, it is expected that the RS Mg-Zn-Gd alloys have excellent mechanical properties. In this study, we have developed high strength RS Mg-Zn-Gd alloys with LPO structure and nanometer-scale precipitates by RS ribbon-consolidation processing. $Mg_{97}Zn_1Gd_2$ and $Mg_{95.5}Zn_{1.5}Gd_3$ and $Mg_{94}Zn_2Gd_4$ bulk alloys exhibited high tensile yield strength (470 MPa and 525 MPa and 566 MPa) and large elongation (5.5% and 2.8% and 2.4%).

  • PDF

Molten Salt-Based Carbon-Neutral Critical Metal Smelting Process From Oxide Feedstocks

  • Wan-Bae Kim;Woo-Seok Choi;Gyu-Seok Lim;Vladislav E. Ri;Soo-Haeng Cho;Suk-Cheol Kwon;Hayk Nersisyan;Jong-Hyeon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.9-22
    • /
    • 2023
  • Spin-off pyroprocessing technology and inert anode materials to replace the conventional carbon-based smelting process for critical materials were introduced. Efforts to select inert anode materials through numerical analysis and selected experimental results were devised for the high-throughput reduction of oxide feedstocks. The electrochemical properties of the inert anode material were evaluated, and stable electrolysis behavior and CaCu generation were observed during molten salt recycling. Thereafter, CuTi was prepared by reacting rutile (TiO2) with CaCu in a Ti crucible. The formation of CuTi was confirmed when the concentration of CaO in the molten salt was controlled at 7.5mol%. A laboratory-scale electrorefining study was conducted using CuTi(Zr, Hf) alloys as the anodes, with a Ti electrodeposit conforming to the ASTM B299 standard recovered using a pilot-scale electrorefining device.

The Effects of Current Adjustment on the Preparation of Fe-Al Intermetallic Compounds by Field-Activated Combustion Synthesis (FACS법에 의한 Fe-Al계 금속간화합물의 제조시 통전방식의 영향)

  • Yun, Gi-Seok;Jeong, Jung-Chae;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.680-687
    • /
    • 1999
  • Fe-Al intermetallic compounds were manufactured by using the field-activated combustion synthesis process. Effects of chemical composition(Fe:Al= 3: 1,2:1, 1:1, 1:2, 1:3), Compaction pressure(150, 250, 350MPa) and electrical resistance on the reaction were investigated in this system. As the molar ratio of Al, compaction pressure and electric field increased, the combustion temperature and velocity were increased. The influences for reaction with current adjust way were investigated in this system. But in the absence of a electric field, the reaction could sustain a nonsteady combustion wave and was not completed. The reaction products were characterized with X-ray, SEM and EDXS to determine the structure and composition.

  • PDF

The Effect of Y Addition on the Microstructure and Mechanical Property of Rapidly Solidified AZ91 Alloy (급속응고한 AZ91합금의 미세조직 및 기계적 특성에 미치는 Y첨가의 영향)

  • Choi, Jae-Young;Park, Hoon-Mo;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.386-394
    • /
    • 2000
  • In the present study, the effect of yttrium addition on the microstructure and mechanical property of rapidly solidified AZ91 alloy by melt spinning process is estimated. As yttrium was added, the microstructure of RS ribbons and extrudates became finer than those of AZ91, and RE related phases $(Al_2RE)$ were formed. In the case of the addition of 3wt%Y, the microstructure of extrude showed the finest grain size. At room temperature, the AZ91 + 3wt%Y alloy showed the highest tensile strength, 352 MPA due to precipitation of ${\beta}(Mg_{17}Al_{12})$ phase and $Al_2RE$ phase. At the elevated temperature, the mechanical property of AZ91 + 3wt%Y alloy was higher than those of other Mg alloys. The reasons were that $Al_2Y$ compound was thermally stable and suppressed the grain growth. In contrast with $Al_2Y$ compounds, ${\beta}$ phase was thermally unstable and could not suppress the grain growth at the elevated temperature. Therefore, $Al_2Y$ phase contributed to improve the thermal stability of RS AZ91 alloy.

  • PDF

The structure and mechanical properties of unidirectionally solidified Al-Fe-Ni, Al-Fe-B alloy (일방향 응고시킨 Al-Fe-Ni, Al-Fe-B 합금의 기계적 성질 및 조직)

  • 김여원;신문교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.57-66
    • /
    • 1986
  • The microstructure and mechanical properties of unidirectionally solidified Al-Fe-Ni and Al-Fe-B alloys have been studied in varying the some conditions. To investigate the change of microstructure and mechanical properties was carried out by the varying the composition and solidification rate from 1.2 to 80 mm/min at temperature gradient 60 .deg. C/cm. The results obtained are as follow; 1. In proportion to the increase of the solidification rate, the type of crystallized phase of these composite alloys was changed by added element. a) The crystallized phase of composite alloy in added nikel was changed from the rod-type fiber to platetype fiber. b) The crystallized phase of composite alloy in added boron was changed from the plate-type fiber to rod-type fiber. 2. The strength was rapidly increased with the changing process of crystallized fiber from the plate-type fiber to the rod-type.

  • PDF

The structures and mechanical properties of unidirectionally solidified Al-Fe-Ni alloy (일방향응고시킨 Al-Fe-Ni 합금의 조직과 기계적 성질)

  • 김여원;신민교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.79-90
    • /
    • 1983
  • The examination for the changes of structures and mechanical properties in directionally solidified Al-Fe-Ni alloys containing the small amount of Fe and Ni was carried out by the varying the composition and solidification rate R of alloy, provided that the temperature gradient was 80 .deg.C/cm. The result were obtained as follows. A) In proportion to the increase of the solidification rate (R), the crystallized phase of this alloy was changed from the Ribbon-type structure to the Rod-type structure. B) The strength was rapidly increased in the changing process of composite shape from the Ribbon-type to the Rod-type with the solidification rate (R) increasing. C) The fiber stress (${\sigma}^f$) and Young's modulus ($E_f$) calculated for the Rod-type structure were 220 kg/$mm^2$ and 11, 800 kg/$mm^2$ respectively, which were in good accord with the rule of Mixtures.

  • PDF

Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty (급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향)

  • 김홍물
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF