• Title/Summary/Keyword: Rapidly solidified process

Search Result 64, Processing Time 0.02 seconds

Finite Element Analysis for Extrusion of Rapidly Solidified Al-Si Alloys (급속응고 Al-Si합금의 압출가공에 대한 유한요소해석)

  • 김의석
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.260-265
    • /
    • 1996
  • Investigation on the extrusion of rapidly solidified Al-Si alloys was performed in order to develop an inexpensive production process of high strength parts. It is necessary to establish optimum process variables for the extruding condition through the experiments, because it is high cost and time consuming process. In this paper, the experimental results was compared to the finite element analysis for the extrusion of rapidly solidified Al-Si alloys. The results of this simulation helped to understand the distribution of relative density and effective stress for rapidly solidified Al-Si alloys during the extrusion process. This information is expected to assist in improving the extrusion operations of rapidly solidified Al-Si alloys.

  • PDF

Finite Element Analysis for Forging Processes of Rapidly Solidified Al-Si Alloys (급속응고 Al-Si계 합금의 단조공정에 대한 유한요소 해석)

  • 손현택
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The densification behaviors of rapidly solidified Al-Si alloys under high temperature processing were investigated. In general, it was difficult to establish optimum process variables for forging condition through experimentation, because this was costly and time consuming. In this paper, to overcome these problems, we compared the experimental result to the finite element analysis for forging processes of rapidly solidified Al-Si alloys. The results of these simulations helped understand the distribution of relative density during various forging processes. This information is expected to assist in improving rapidly solidified Al-Si alloys forging operations.

  • PDF

A Study on the Powder Structure of Rapidly Solidified HSLA Steels. (급냉응고한 HSLA강의 분말조직에 관한 연구)

  • Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.7 no.2
    • /
    • pp.133-139
    • /
    • 1987
  • The evolution of microstructures in two rapidly solidfied niobium microalloyed steels was studied. These alloys were rapidly solidified by two powder process techniques: nitrogen gas atomization and centrifugal atomization. It was found that in both powder processes, powder particles larger than $20{\mu}m$in diameter were martensitic, and that the nitrogen gas atomized particles solidified cellularly while those that were centrifugally atomized tended to solidify dendritically. Particles smaller than $1{\mu}m$ were not completely characterized because of wide variation in composition.

  • PDF

Preparation of WC Powders by SHS Process in the Presence of Alkali Salts (자전연소합성법에서의 알칼리염을 이용한 WC 분말의 제조)

  • Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.152-156
    • /
    • 2007
  • Tungsten carbide powder was synthesized by SHS (self-propagating high-temperature synthesis). Except $WO_{3}$, each concentration of raw material ($WO_{3},\;Mg,\;NaCl,\;Na_{2}CO_{3},\;C$) was investigated. Final product was characterized by XRD and SEM. X-ray data demonstrated that the $NaCl+Na_{2}CO_{3}$ combined mixture has superiority in the WC formation process. Single phase and submicrometer WC powder was synthesized at the temperature below $1600^{\circ}C$. The role of sodium salts in combustion process was discussed, and chemical mechanism of WC formation was proposed. WC powder prepared by salt-assisted combustion synthesis has a size $0.2{\sim}3\;{\mu}m$ and low agglomeration degree.

Size Control of Spherical Nickel Powders Synthesized by Solution-Reduction Method (용액환원법에 의한 구형 니켈 분말의 입자 크기 제어)

  • Kwak, Hyo Jung;Nersisyan, Hayk;Won, Hyung Ill;Won, Chang Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The reduction of $Ni(OH)_2$ by hydrazine-sodium phosphinate in water and water-diethylene glycol solutions for the preparation of spherical nickel particles has been studied at room temperature. The effect of reaction conditions on the size and morphology of Ni powder was revealed using SEM and XRD analysis technique. It was shown that in the presence of sodium phosphinate the reduction process become activated and a formation of Ni particles was completed within several minutes at room temperature. As a desired result spherical Ni powders with particles size from 0.07 to 2.0 mm were obtained.

Extrusion Behavior and Finite Element Analysis of Rapidly Solidified Al-Si-Fe Alloys (급속응고 Al-Si-Fe 합금의 압출거동 및 유한요소 해석)

  • 정기승
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable $\delta$ phase($Al_4SiFe_2$) intermetallic compound disappears and the equilibrium $\beta$ phase($Al_5FeSi_2$) is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.

  • PDF

Effects of Sr on the Characteristics of PZT Ceramics Prepared by Hydrothermal Process (수열합성법에 의해 제조된 PZT의 특성에 미치는 Sr의 영향)

  • Yang, Beom-Seok;Shin, Chang-Yun;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.681-687
    • /
    • 2008
  • The sintering and electrical properties of the hydrothermal PSZT powders obtained by substituting 4, 6 and 8mol% Sr for Pb in PZT lattice structure were investigated. The lattice constant and particle size decreased in proportion to a quantity of Sr. The sintering properties of PSZT powders showed $7.754g/cm^3$ of sintered density and $4{\mu}m$ of grain size at sintering temperature of $1250^{\circ}C$. Curie temperature lowered gradually from $363.6^{\circ}C\;to\;319.2^{\circ}C$ and relative dielectric constants increased rapidly by a quantity of Sr. In comparison to PZT, moreover, the quality factor of PSZT was increased more than three times with increase of Sr mole ratio, and piezoelectric constant $(d_{31}\;and\;g_{31})$ was decreased. It was found that dielectric loss of PSZT was decreased by 0.574% which was half of PZT.

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF