• Title/Summary/Keyword: Rapid learning

Search Result 613, Processing Time 0.026 seconds

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Research Trends of Multi-agent Collaboration Technology for Artificial Intelligence Bots (AI Bots를 위한 멀티에이전트 협업 기술 동향)

  • D., Kang;J.Y., Jung;C.H., Lee;M., Park;J.W., Lee;Y.J., Lee
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.6
    • /
    • pp.32-42
    • /
    • 2022
  • Recently, decentralized approaches to artificial intelligence (AI) development, such as federated learning are drawing attention as AI development's cost and time inefficiency increase due to explosive data growth and rapid environmental changes. Collaborative AI technology that dynamically organizes collaborative groups between different agents to share data, knowledge, and experience and uses distributed resources to derive enhanced knowledge and analysis models through collaborative learning to solve given problems is an alternative to centralized AI. This article investigates and analyzes recent technologies and applications applicable to the research of multi-agent collaboration of AI bots, which can provide collaborative AI functionality autonomously.

An Explainable Deep Learning Algorithm based on Video Classification (비디오 분류에 기반 해석가능한 딥러닝 알고리즘)

  • Jin Zewei;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.449-452
    • /
    • 2023
  • The rapid development of the Internet has led to a significant increase in multimedia content in social networks. How to better analyze and improve video classification models has become an important task. Deep learning models have typical "black box" characteristics. The model requires explainable analysis. This article uses two classification models: ConvLSTM and VGG16+LSTM models. And combined with the explainable method of LRP, generate visualized explainable results. Finally, based on the experimental results, the accuracy of the classification model is: ConvLSTM: 75.94%, VGG16+LSTM: 92.50%. We conducted explainable analysis on the VGG16+LSTM model combined with the LRP method. We found VGG16+LSTM classification model tends to use the frames biased towards the latter half of the video and the last frame as the basis for classification.

Development of Augmentation Method of Ballistic Missile Trajectory using Variational Autoencoder (변이형 오토인코더를 이용한 탄도미사일 궤적 증강기법 개발)

  • Dong Kyu Lee;Dong Wg Hong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • Trajectory of ballistic missile is defined by inherent flight dynamics, which decided range and maneuvering characteristics. It is crucial to predict range and maneuvering characteristics of ballistic missile in KAMD (Korea Air and Missile Defense) to minimize damage due to ballistic missile attacks, Nowadays, needs for applying AI(Artificial Intelligence) technologies are increasing due to rapid developments of DNN(Deep Neural Networks) technologies. To apply these DNN technologies amount of data are required for superviesed learning, but trajectory data of ballistic missiles is limited because of security issues. Trajectory data could be considered as multivariate time series including many variables. And augmentation in time series data is a developing area of research. In this paper, we tried to augment trajectory data of ballistic missiles using recently developed methods. We used TimeVAE(Time Variational AutoEncoder) method and TimeGAN(Time Generative Adversarial Networks) to synthesize missile trajectory data. We also compare the results of two methods and analyse for future works.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.

Dust Prediction System based on Incremental Deep Learning (증강형 딥러닝 기반 미세먼지 예측 시스템)

  • Sung-Bong Jang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.301-307
    • /
    • 2023
  • Deep learning requires building a deep neural network, collecting a large amount of training data, and then training the built neural network for a long time. If training does not proceed properly or overfitting occurs, training will fail. When using deep learning tools that have been developed so far, it takes a lot of time to collect training data and learn. However, due to the rapid advent of the mobile environment and the increase in sensor data, the demand for real-time deep learning technology that can dramatically reduce the time required for neural network learning is rapidly increasing. In this study, a real-time deep learning system was implemented using an Arduino system equipped with a fine dust sensor. In the implemented system, fine dust data is measured every 30 seconds, and when up to 120 are accumulated, learning is performed using the previously accumulated data and the newly accumulated data as a dataset. The neural network for learning was composed of one input layer, one hidden layer, and one output. To evaluate the performance of the implemented system, learning time and root mean square error (RMSE) were measured. As a result of the experiment, the average learning error was 0.04053796, and the average learning time of one epoch was about 3,447 seconds.

A Study on the PID controller auto-tuning (PID제어기 자동동조에 관한 연구)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.630-632
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

Fuzzy-AHP Estimation Technique for Korea High Speed Railway Safety Management (F-AHP 평가수법을 적용한 고속전철 안전성의 평가)

  • Park Tae-Keun;Park Choon-Soo;Seo Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.328-333
    • /
    • 2004
  • Railway is huge traffic system which is operated organically combining all the elements; vehicle, track, electric power, signal/communication, operation, etc. Safety level has ben improved steadily by learning lessons from past accident. But with rapid progress in high-speed, massive, high-frequency transit fresh idea of accident prevention is now in order. In quest of effective and efficient countermeasure, we aim to establish an adequate safety evaluation/management method. Our proposals are basic concept relating to safety analysis of fatal accidents, AHP of Saaty, Fuzzy AHP.

  • PDF

Fuzzy-AHP Estimation Technique for Korea High Speed Railway Safety Management (F-AHP평가수법을 적용한 고속전철 안전성의 평가)

  • 박태근;박춘수;서승일
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.192-198
    • /
    • 2003
  • Railway is huge traffic system which is operated organically combining all the elements; vehicle, track, electric power, signal/communication, operation, etc. Safety level has been improved steadily by learning lessons from past accident. But with rapid progress in high-speed, massive, high-frequency transit fresh idea of accident prevention is now in order. In quest of effective and efficient countermeasure, we aim to establish an adequate safety evaluation/management method. Our proposals are basic concept relating to safety analysis of fatal accidents, AHP of Saaty, Fuzzy AHP.

  • PDF

미완의 기술학습: 한국 신발산업의 성장과 쇠퇴

  • 김석관
    • Journal of Technology Innovation
    • /
    • v.8 no.2
    • /
    • pp.203-230
    • /
    • 2000
  • Korean footwear industry has experienced rapid growth and decline during last 30 years. The purpose of this paper is to analyse the main reason for the decline of Korean footwear industry by examining the process of technological learning which Korean footwear firms experienced during last 30 years of OEM. Before this analysis is done, innovation patterns of world footwear industry is sketched to compare with those of Korean footwear industry. On the basis of the analysis on the reasons for decline, I suggest some policy recommendations.

  • PDF