• Title/Summary/Keyword: Rapid breakdown anodization

Search Result 2, Processing Time 0.018 seconds

Photocatalytic decomposition of polyethylene composite film with TiO2 nanotube powders prepared by rapid breakdown anodization (급속 파괴 양극산화로 제조된 TiO2 나노 튜브 분말을 활용한 폴리에틸렌 복합 필름의 UV 광촉매 분해)

  • Lim, Kyungmin;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.153-159
    • /
    • 2020
  • Photocatalytic decomposition of polyethylene film with TiO2 nanotube powders (NTs) was investigated under UV irradiation at ambient conditions. TiO2 NTs composed of individual nanotubes are prepared by rapid breakdown anodization technique. A comparative study on the photocatalytic decomposition of polyethylene-TiO2 composite films prepared using TiO2 nanoparticles (NPs) or TiO2 NTs (NTs), respectively, was conducted under UV irradiation. Polyethylene film incorporated with TiO2 NTs showed 26 wt% weight loss after 200 h under UV irradiation about two times faster decomposition rate than TiO2 NPs which is attributed to large surface area of TiO2 NTs.

Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution (황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.