• Title/Summary/Keyword: Ranking Method

Search Result 641, Processing Time 0.023 seconds

A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

  • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.31-59
    • /
    • 2007
  • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.

Verification of Landfill Hazard Ranking Model by Sensitivity Analysis (민감도 분석에 의한 LHR 모형의 검증)

  • Hong, Sangpyo;Kim, Jungwuk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • LHR(Landfill Hazard Ranking Model) was developed for assessing the relative hazard of landfills by using the method of value-structured approach. LHR consists of combining a multiattribute decision-making method with a qualitative risk assessment approach. A pairwise comparision method was applied to determine weights of landfill factors related. To prove the validity of weights allocation of landfill hazard evaluation factors, sensitivity analysis was applied. Firstly, the impact on landfill hazard score according to variations of weights of landfill hazard factors was analyzed. Secondly, the impact on landfill hazard score according to conditions change of landfill hazard factors was analyzed. As a result of sensitivity analysis, LHR composite scores are largely influenced by some factors following sequential order such as waste volume, proximity to sensitive environments, containment facilities, distance from drinking water supplies, and waste toxicity. The relative order of landfill hazard evaluated by LHR is not influenced by the weights change of individual factors. Therefore, LHR seems to be a credible model to determine priorities of landfill remediation based on the vulnerability of water resources.

  • PDF

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

Optimal monitoring instruments selection using innovative decision support system framework

  • Masoumi, Isa;Ahangari, Kaveh;Noorzad, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.123-137
    • /
    • 2018
  • Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

An Evaluation of Twitter Ranking Using the Retweet Information (재전송 정보를 활용한 트위터 랭킹의 정확도 평가)

  • Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.2
    • /
    • pp.73-85
    • /
    • 2012
  • Recently, as Social Network Services(SNS), such as Twitter, Facebook, are becoming more popular, much research has been doing actively. However, since SNS has been launched recently, related researches are also infant level. Especially, search engines serviced in web potals simply show the postings in order of upload time. Searching the postings in Twitter should be different from web search, which is based on traditional TF-IDF. In this paper, we present the new method of searching and ranking the interesting postings in Twitter. In proposed method, we utilize the frequency of retweets as a major factor for estimating the quality of postings. It can be an important criteria since users tend to retweet the valuable postings. Experimental results show that proposed method can be applied successfully in Twitter search system.

Implementation of Search Method based on Sequence and Adjacency Relationship of User Query (사용자 검색 질의 단어의 순서 및 단어간의 인접 관계에 기반한 검색 기법의 구현)

  • So, Byung-Chul;Jung, Jin-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.724-729
    • /
    • 2011
  • Information retrieval is a method to search the needed data by users. Generally, when a user searches some data in the large scale data set like the internet, ranking-based search is widely used because it is not easy to find the exactly needed data at once. In this paper, we propose a novel ranking-based search method based on sequence and adjacency relationship of user query by the help of TF-IDF and n-gram. As a result, it was possible to find the needed data more accurately with 73% accuracy in more than 19,000 data set.

Ontology Selection Ranking Model based on Semantic Similarity Approach (의미적 유사성에 기반한 온톨로지 선택 랭킹 모델)

  • Oh, Sun-Ju;Ahn, Joong-Ho;Park, Jin-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.2
    • /
    • pp.95-116
    • /
    • 2009
  • Ontologies have provided supports in integrating heterogeneous and distributed information. More and more ontologies and tools have been developed in various domains. However, building ontologies requires much time and effort. Therefore, ontologies need to be shared and reused among users. Specifically, finding the desired ontology from an ontology repository will benefit users. In the past, most of the studies on retrieving and ranking ontologies have mainly focused on lexical level supports. In those cases, it is impossible to find an ontology that includes concepts that users want to use at the semantic level. Most ontology libraries and ontology search engines have not provided semantic matching capability. Retrieving an ontology that users want to use requires a new ontology selection and ranking mechanism based on semantic similarity matching. We propose an ontology selection and ranking model consisting of selection criteria and metrics which are enhanced in semantic matching capabilities. The model we propose presents two novel features different from the previous research models. First, it enhances the ontology selection and ranking method practically and effectively by enabling semantic matching of taxonomy or relational linkage between concepts. Second, it identifies what measures should be used to rank ontologies in the given context and what weight should be assigned to each selection measure.

  • PDF

A probabilistic information retrieval model by document ranking using term dependencies (용어간 종속성을 이용한 문서 순위 매기기에 의한 확률적 정보 검색)

  • You, Hyun-Jo;Lee, Jung-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.763-782
    • /
    • 2019
  • This paper proposes a probabilistic document ranking model incorporating term dependencies. Document ranking is a fundamental information retrieval task. The task is to sort documents in a collection according to the relevance to the user query (Qin et al., Information Retrieval Journal, 13, 346-374, 2010). A probabilistic model is a model for computing the conditional probability of the relevance of each document given query. Most of the widely used models assume the term independence because it is challenging to compute the joint probabilities of multiple terms. Words in natural language texts are obviously highly correlated. In this paper, we assume a multinomial distribution model to calculate the relevance probability of a document by considering the dependency structure of words, and propose an information retrieval model to rank a document by estimating the probability with the maximum entropy method. The results of the ranking simulation experiment in various multinomial situations show better retrieval results than a model that assumes the independence of words. The results of document ranking experiments using real-world datasets LETOR OHSUMED also show better retrieval results.

An Integrated Multicriteria Decision-Making Approach for Evaluating Nuclear Fuel Cycle Systems for Long-term Sustainability on the Basis of an Equilibrium Model: Technique for Order of Preference by Similarity to Ideal Solution, Preference Ranking Organization Method for Enrichment Evaluation, and Multiattribute Utility Theory Combined with Analytic Hierarchy Process

  • Yoon, Saerom;Choi, Sungyeol;Ko, Wonil
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.148-164
    • /
    • 2017
  • The focus on the issues surrounding spent nuclear fuel and lifetime extension of old nuclear power plants continues to grow nowadays. A transparent decision-making process to identify the best suitable nuclear fuel cycle (NFC) is considered to be the key task in the current situation. Through this study, an attempt is made to develop an equilibrium model for the NFC to calculate the material flows based on 1 TWh of electricity production, and to perform integrated multicriteria decision-making method analyses via the analytic hierarchy process technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory methods. This comparative study is aimed at screening and ranking the three selected NFC options against five aspects: sustainability, environmental friendliness, economics, proliferation resistance, and technical feasibility. The selected fuel cycle options include pressurized water reactor (PWR) once-through cycle, PWR mixed oxide cycle, or pyroprocessing sodium-cooled fast reactor cycle. A sensitivity analysis was performed to prove the robustness of the results and explore the influence of criteria on the obtained ranking. As a result of the comparative analysis, the pyroprocessing sodium-cooled fast reactor cycle is determined to be the most competitive option among the NFC scenarios.

Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method (Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정)

  • Park, Haekeum;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.