• Title/Summary/Keyword: Rankine's earth pressure

Search Result 25, Processing Time 0.027 seconds

Suitability Evaluation of Lateral Earth Pressure for Design Diaphragm Walls applied to the Top-Down Construction Method (Top-Down 공법이 적용된 지중연속벽의 설계시 측방토압의 적합성 평가)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • The Rankine(1857)'s earth pressure and the Hong and Yun(1995a)'s earth pressure was applied to analyze the lateral displacement of diaphragm wall applied to the Top-Down construction method using the computer program, which is a common design program for diaphragm wall. The lateral displacement estimated by the computer program was compared with the lateral displacement measured by inclinometer. The Rankine's earth pressure has been widely used to design the diaphragm wall in the analysis of computer program. As the result of comparison, the lateral displacement of diaphragm wall was predicted differently according to the applied earth pressures. The behavior of lateral displacement predicted by the Rankine's earth pressure was different with displacement measured by inclinometer and the lateral displacement at the bottom part was overestimated. However, the lateral displacement predicted by the Hong and Yun's earth pressure is similar to the behavior and maximum value of real displacement. Therefore, the Hong and Yun's earth pressure is more suitable than the Rankine' earth pressure to design the diaphragm walls applied to the Top-Down Construction Method.

Nonlinearly Distributed Active Earth Pressure on n Translating Rigid Retaining Wall : I. Formulation (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : I. 정식화)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.181-189
    • /
    • 2003
  • The active earth pressure against a rigid retaining wall has been generally calculated using either Rankine's or Coulomb's formulation. Both assume that the distribution of active earth pressure exerted against the wall is triangular. However, many experimental results show that the distribution of the active earth pressure on a rigid rough wall is nonlinear. These results do not agree with the assumption used in both Rankine's and Coulomb's theories. The nonlinearity of the active earth pressure distribution results from arching effects in the backfill. Several researchers have attempted to estimate the active earth pressure on a rigid retaining wall, considering arching effect in the backfill. Their equations, however, have some limitations. In this paper, a new formulation for calculating the active earth pressure on a rough rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill.

Coefficient charts for active earth pressures under combined loadings

  • Zheng, De-Feng;Nian, Ting-Kai;Liu, Bo;Yin, Ping;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.461-476
    • /
    • 2015
  • Rankine's theory of earth pressure cannot be directly employed to c-${\phi}$ soils backfill with a sloping ground subjected to complex loadings. In this paper, an analytical solution for active earth pressures on retaining structures of cohesive backfill with an inclined surface subjected to surcharge, pore water pressure and seismic loadings, are derived on the basis of the lower-bound theorem of limit analysis combined with Rankine's earth pressure theory and the Mohr-Coulomb yield criterion. The generalized active earth pressure coefficients (dimensionless total active thrusts) are presented for use in comprehensive design charts which eliminate the need for tedious and cumbersome graphical diagram process. Charts are developed for rigid earth retaining structures under complex environmental loadings such as the surcharge, pore water pressure and seismic inertia force. An example is presented to illustrate the practical application for the proposed coefficient charts.

Generalized Formula for Active Earth Pressure Estimation with Inclined Retaining Wall (점착력을 고려한 배면 경사 옹벽에서의 주동토압 산정 공식)

  • Kim, Woncheul;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.71-81
    • /
    • 2008
  • Active earth pressure formula, which can consider the effects of ground surface inclination, inclination of inside retaining wall face, wall friction, line load, uniform load, soil cohesion and adhesion, was derived based on the force equilibrium principle. In order to verify the accuracy of this proposed formula, the calculated active earth pressures by the proposed formula were compared with those of graphical solutions. Also, the active earth pressures determined by the proposed formula were compared with those by Coulomb's, Rankine's and Mazindrani's solution under specific conditions. The results matched quite well not only with the graphical solutions but also with those by three other methods. Also, the trend of active earth pressures by the proposed formula were corresponded with results of experimental study by Fang, et al. It can be concluded that this generalized formula not only can overcome the limitations of Rankine's, Coulomb's and Mazindrani's active earth pressure formula but also can consider the external loading conditions.

  • PDF

The Calculation and Design Method of Active Earth Pressure with Type of Gravity Structures (중력식 구조물의 형태에 따른 주동토압 산정과 설계법 제안)

  • Kim, Byung-Il;Jeong, Young-Jin;Kim, Do-Hyung;Lee, Chung-Ho;Han, Sang-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.47-63
    • /
    • 2014
  • In this study theories of earth pressure such as Rankine, Coulomb, Trial Wedge, Improved Trial Wedge, used in the design for onshore and offshore structures, are analyzed and the characteristics of loaded pressure to virtual back (wall, plane) and wall surface in accordance with the structure type are suggested. To investigate characteristics of earth pressure, gravity retaining wall with inclined angle and cantilever wall with inclined ground are movilized for onshore structures and caisson and block type quay wall are mobilized for offshore structures. Based on various theories, the earth pressure applied angle(wall friction angle) and sliding angle toward the wall, which is influenced by the heel length, are calculated and compared. In the case of long heel, the pressure by Rankine's method in virtual plane and the mobilized angle are most reasonably estimated by the ground slope, and in the case of short heel, the pressure by Coulomb's method and the mobilized angle by the angle of wall friction. In addition, the sliding angle toward the wall estimated by the improved trial wedge method is large than the value of Rankine's method. Finally, in this study the reasonable method for calculating the pressure and the mobilized angle that can be applied to the routine design of port structures is proposed. The proposed method can decide the earth pressure with length of a heel and a self weight of retaining wall according to sliding angle toward the wall.

Lateral Earth Pressure against Gravity Walls Backfilled by $C-\phi$ Soil ($C-\phi$ 흙으로 뒤채움한 중력식 옹벽에 작용하는 정적토압)

  • Jeong, Seong-Gyo;Heo, Dae-Yeong;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-60
    • /
    • 1996
  • Of the classical theories on lateral earth pressure, the Coulomb's and the Rankine's theories, which have been usually used in practice for design of retaining walls, assumed that the lateral earth pressure was a triangular distribution. However, the experimental results obtained by Terzaghi(1934), Tsagreli(1967), Fang & Ishibashi(1986), etc showed that lateral pressure were not triangular distribution. ' In this study, for rigid walls with inclined backfaces and inclined surfaces backfilled by $C-\phi$ soils, an analytical method of earth pressure distribution has been newly suggested by using the concept of the flat arch. The results calculated by the newly suggested equations were compared with ones by the existed theories. And'the influence factors of the earth pressures by the suggested equations were investigated. As a result, the thrusts obtained by this method agree well with those by the existing theories, except the Rankine's solution. It was showed that the height to the centre of pressure(h) depends mainly upon the inclinations of the backface and the backfilled surface, the angle of internal friction, and the adhesion between the wall and the backfilled soil, instead of 0.33H, where H is the wall height.

  • PDF

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Long term earth pressure behavior behind stub abutment (난쟁이 교대배면의 장기 토압거동)

  • 박영호;정경자;김낙영;황영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.779-786
    • /
    • 2002
  • To find a long term horizontal movement of superstructure caused by seasonal thermal change, several types of gages are installed such as soil earth pressuremeter behind stub abutment and jointmeter between approach slab and relief slab. As results, maximum passive earth pressure behind integral bridge abutments centerline with lateral movement of superstructure is about 1/6 of classic Rankine's earth pressure. And its distribution is not triangular but rectangular shape due to shape behind integral bridge abutments.

  • PDF

Reduction of Horizontal Earth Pressure on Retaining Structures by a Synthetic Compressible Inclusion (압축성재료를 이용한 콘크리트 옹벽의 수평토압 저감방안에 대한 연구)

  • Yoo, Ki-Cheong;Paik, Young-Shik;Kim, Ho-Bi;Kim, Khi-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2003
  • Current methods for lateral thrust calculations are based on the classical formulations of Rankine or Coulomb. However, the previous studies indicate that lateral earth pressures acting on the wall stem, which is the function of deformation parameters of the backfill, are close to the active condition only in the top half of the wall stem and in the lower half of the wall stem, the lateral earth pressures are significantly in excess of the active pressures. This paper presents the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS. Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure can be reduced about 20% compared with classical active earth pressure.

  • PDF

A Reliability Analysis of Rigid Retaining Wall due to the Modes of Wall Movement (벽체변위에 따른 토류벽의 신뢰도해석)

  • Jae, Yeong-Su;Kim, Yong-Pil;Song, Yong-Seon
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-16
    • /
    • 1988
  • The safety factor has been used widely and uniquely at present to check the safety of the structure . However, probability of failure would be logically attempted to check the reliability of the structure in future Coulomb's theory or Rankine's theory has been applied in practice to retaining earth structure in spite of the fact that the lateral earth pressure, which is the primary factor in the determination of wall structure, depends on the modes of wall movement . This study is concentrated on the two modes of , wall movement (active case rotation about bottom(AB) , active case rotation about top(AT)) of the overturning'failure of vertical wall with horizontal sand backfill . The static active earth pressure is determined by applying each of Coulomb's theory, Dubrova's redistribution theory and Chang's method The earthquake active earth pressure is determined by adding Seed and Whitman's earthquake pressure to the static earth pressure , On the condition that design variables are fixed with each of the above earth pressure, reliability is analyzed using the recently developed method of AFOSM (Advanced First Order Second Moment)

  • PDF