Kutubi, Abdullah Al Rahat;Hong, Min-Gee;Kim, Choen
대한원격탐사학회지
/
제34권1호
/
pp.151-166
/
2018
This paper compares the four selections of performance used in the application of genetic algorithms (GAs) to automatically optimize multispectral pixel cluster for unsupervised classification from KOMPSAT-3 data, since the selection among three main types of operators including crossover and mutation is the driving force to determine the overall operations in the clustering GAs. Experimental results demonstrate that the tournament selection obtains a better performance than the other selections, especially for both the number of generation and the convergence rate. However, it is computationally more expensive than the elitism selection with the slowest convergence rate in the comparison, which has less probability of getting optimum cluster centers than the other selections. Both the ranked-based selection and the proportional roulette wheel selection show similar performance in the average Euclidean distance using the pixel clustering, even the ranked-based is computationally much more expensive than the proportional roulette. With respect to finding global optimum, the tournament selection has higher potential to reach the global optimum prior to the ranked-based selection which spends a lot of computational time in fitness smoothing. The tournament selection-based clustering GA is used to successfully classify the KOMPSAT-3 multispectral data achieving the sufficient the matic accuracy assessment (namely, the achieved Kappa coefficient value of 0.923).
This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.
Journal of information and communication convergence engineering
/
제21권1호
/
pp.82-89
/
2023
Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.
Due to environmental issues such as global warming, the importance of renewable energy is growing. Solar Power System is one of the most growing eco-friendly energy industries in the world, but Korea's solar energy industry faces fierce competition due to the trade regulations and changes in energy related laws in the major markets such as the U.S., EU and China. Therefore, Korea needs to diversify its export markets towards emerging markets. This paper analyzed 162 countries in the world and developed a model to measure how promising the countries are. GSMI(Grid connected Solar Market Index) and OSMI(Off-grid Solar Market Index) are invented based on the models. By using the developed model and the data of 162 countries over the 15-year period from 2000 to 2014, the foreign markets are ranked for searching the export market. According to the analysis, China, Japan, U.S, India and Taiwan ranked first to fifth in GSMI and OSMI ranking, which were followed by China, India, Bangladesh, Philippines and Afghanistan. The model developed through this research is expected to provide a more reasonable and scientific approach to the advancement of the Korean solar energy industry into overseas markets.
This study was conducted to select indicators for assessing national biodiversity. For this purpose, 140 biodiversity-related indicators were identified as a result of inventorying biodiversity-related indicators used in Korea and abroad, and when these indicators were applied to the pressure, status, and response indicator system, it was found that status indicators accounted for the largest number of indicators, with 29 pressure, 59 status, and 44 response. We also categorized the status indicators into genes, species, habitat, function, and quality, and found that species and habitat indicators accounted for the majority. Pressure indicators were categorized into direct exploitation, pollution, alien species, climate change, and habitat change. As a result, it was found that direct exploitation and pollution accounted for most of the pressure indicators. In addition, this study used internationally used indicator selection criteria to establish criteria for selecting domestic biodiversity assessment indicators. Using this list of indicators and indicator selection criteria, we evaluated the prioritization of domestically applicable biodiversity indicators through relevant expert consultations. 1) Vegetation class, 2) Land cover indicators, and 3) Change of protected area ranked highly. In fact, these indicators have been used in many studies due to the availability of assessable data. However, most of the highly scored indicators are based on ecosystem area, and further consideration of ecosystem functions and components(species) is needed.
국내 AI Speaker 시장은 18년말 국내 보급대수 300만대로 혁신소비자 시장을 넘어 본격적인 조기 수용자 시장으로 성장하고 있지만, 여러 이유로 사용에 만족함을 느끼지 못하는 것이 현실이다. AI Speaker에 대한 많은 선행논문이 나오고 있지만, 지금까지 대다수의 연구는 기기 자체 성능에 대한 수용여부에 치우쳐 있는 경향이 있다, Covid-19시대에 이전 보다 많은 시간을 집안에서 거주를 하게 되고, 이는 많은 OTT사업자들이 AI스피커 사업자와의 협업을 통한 시장 확보를 노력 하는 등의 많은 변화가 이루어지고 있는 오늘의 상황에서, 본 연구는 아직 불만족적인 기술에 대한 요인은 배제하고 AI스피커의 또 하나의 주요 선택 요인이 될 수 있는 콘텐츠 서비스에 대한 우선순위를 파악하고자 하였다. 먼저, 본 연구는 문헌연구를 통해 도출된 AI스피커 선택 요인을 바탕으로, AHP(Analytic Hierarchy Process)를 이용하여 AI스피커 선택 요인 간 우선순위를 파악하였다. AI스피커 선택에 있어서 가장 중요한 상위계층 요인은 Concierge Service, Education Service, Entertainment Service순서였고, 개별 요인 중 우선순위로 선정된 요인은 1순위로 날씨/기온/미세먼지 (11.6%)를 알리는 기능이 주요 요인이었고, 그 다음으로 2순위 육아 컨텐츠(10.8%), 3순위는 음악 서비스(9.8%)로 분석되었다. 상위 우선순위 3개는 상위 계층 1, 2, 3 우선순위에 있는 항목에서 도출되었다. 전체 15개 개별 서비스 중 Concierge Service(날씨/기온/미세먼지, 뉴스, 음성일정 알림)와 Education Service(외국어, 유아, 책읽기)의 하위계층 6개는 상위 8위 안에 들었으며, Entertainment Service의 두 가지 음악서비스와 영화서비스는 3위와 6위에 랭크되었다.
Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.
The present work proposes the potential fuzzy framework, based on fuzzy set theory, for supporting decision-making problems, especially, selection problems of a best design in the area of nuclear energy system. The framework proposed is composed of the hierarchical structure module, the assignment module, the fuzzification module, and the defuzzification module. In the structure module, the relationship among decision objectives, decision criteria, decision sub-criteria, and decision alternatives is hierarchically structured. In the assignment module, linguistic or rank scoring approach can be used to assign subjective and/or vague values to the decision analyst's judgment on decision variables. In the fuzzification module, fuzzy numbers are assigned to these values of decision variables. Using fuzzy arithmetic operations, for each alternative, fuzzy preference index as a fuzzy synthesis measure is obtained. In the defuzzification module, using one of methods ranking fuzzy numbers, these indices are defuzzified to overall utility values as a cardinality measure determining final scores. According these values, alternatives of interest are ranked and an optimal alternative is chosen. To illustrate the applicability of the framework proposed to selection problem, as a case example, the best option choice of four design options under five decision criteria for primary containment wall thickening around large penetrations in an advanced nuclear energy system is studied.
전자상거래에서 취급되는 상품은 오프라인 상에서 뿐만 아니라 온라인 상에서도 그 종류가 매우 다양하고 수 또한 셀 수 없을 정도로 많다. 이런 이유로 고객들이 그들의 요구에 따른 가장 적합한 상품을 찾기란 쉬운 일이 아니다. 따라서 다양한 성향을 갖는 고객들에게 더 좋은 가치를 갖는 양질의 정보를 제공하기 위해서는 고객들의 선호도를 정확하게 예측하는 능력을 갖는 개인화된 추천 시스템의 개발이 필요하다. 본 논문에서는 추천 시스템에서 클러스터링을 기반으로 한 협동적 필터링을 위한 정제된 이웃선정 방법을 제안한다. 이 방법은 그래프 접근법을 이용하며, 고객에게 영향을 줄 수 있는 다른 고객들의 집합을 보다 효율적으로 찾아낸다. 제안한 방법은 또한 서열화된 클러스터링 및 유사 가중치를 이용하여 탐색을 수행하여 보다 유용한 이웃을 선정한다. 실험 결과는 본 논문에서 제안한 방법을 이용한 추천 시스템이 보다 유용한 이웃 고객들을 찾아냄으로써 추천 시스템의 예측의 질을 향상시켜 주는 것을 보여준다.
Objectives: This study's purpose is finding children's activity spaces that demand environmental safety management. Methods: The method of this study is analysing children's life patterns based on a questionnaire survey. Results: This study analyzed children's life patterns through a questionnaire survey. In total, 2,447 questionnaires were provided to analyze children's life patterns. The results of the questionnaire indicated a highly simple form because many children generally stayed in their home (66%) or nursery facility (2%). In the case of other facilities, playground was ranked first and amusement park was ranked second. In addition, kids cafe (including play facilities installed in shopping centers, etc.), library, and internet cafe were among the responses. Conclusions: The priority for new high-maintenance children's activity spaces are academy (rank 1), kids cafe (rank 2), indoor playground (rank 3).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.