• 제목/요약/키워드: Rank algorithm

검색결과 283건 처리시간 0.035초

Ordinal Rank 알고리즘을 이용한 자동 PIF 추출 - 변화탐지를 위한 상대방사정규화를 목적으로 (Automatic Extraction of Pseudo Invariant Features using Ordinal Rank Algorithm for Radiometric Normalization)

  • 한유경;김대성;김용일
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 춘계학술대회 논문집
    • /
    • pp.213-218
    • /
    • 2008
  • 동일 지점을 촬영한 위성영상은 위성의 센서나 영상의 취득 시기, 지형의 상태 등에 따라 그 지점에 나타나는 화소값이 일정하지 않다. 이러한 영상은 영상간 모자이크나 변화 탐지 결과에 영향을 미칠 가능성이 높으므로 방사보정(또는 방사정규화)을 통해 화소값의 차이를 최소화시킬 필요가 있다. 본 연구는 선형회귀식을 적용한 상대 방사정규화에 초점을 맞추고 있으며, 선형회귀식 구성에 필요한 PIF(Pseudo Invariant Feature)를 자동으로 추출하기 위해 Ordinal Rank 알고리즘을 적용하였다. 이 방법을 통해 각 밴드별 후보 PIF를 추출하고, 공통으로 해당되는 최종 PIF를 추출할 수 있었다. RMSE(Root Mean Square Error), Dynamic range, Coefficient of variation 등을 통해 방사보정 후의 결과를 평가해보았다. 영상회귀를 이용한 방사보정알고리즘과의 비교를 통해 제안된 알고리즘이 갖는 장점을 확인하였다.

  • PDF

토픽 레이블링을 위한 토픽 키워드 산출 방법 (A Method of Calculating Topic Keywords for Topic Labeling)

  • 김은회;서유화
    • 디지털산업정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.25-36
    • /
    • 2020
  • Topics calculated using LDA topic modeling have to be labeled separately. When labeling a topic, we look at the words that represent the topic, and label the topic. Therefore, it is important to first make a good set of words that represent the topic. This paper proposes a method of calculating a set of words representing a topic using TextRank, which extracts the keywords of a document. The proposed method uses Relevance to select words related to the topic with discrimination. It extracts topic keywords using the TextRank algorithm and connects keywords with a high frequency of simultaneous occurrence to express the topic with a higher coverage.

반복 선형행렬부등식을 이용한 저차원 H 제어기 설계 (Design of a Low-Order H Controller Using an Iterative LMI Method)

  • 김춘경;김국헌;문영현;김석주
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.

MOBA 게임의 불량 플레이어 판단을 위한 위한 PageRank 알고리즘 기반의 의사결정 시스템 설계 (Design of Decision Support System for Propensity of User in MOBA using Modified PageRank Algorithm)

  • 심재연;김성환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.1026-1029
    • /
    • 2014
  • MOBA (Multiplayer Online Battle Arena) 기반의 게임 서비스는 현재 가장 관심을 받고 있는 게임 장르의 한 종류이다. MOBA 장르와 같은 게임들은 플레이어의 실력도 중요하지만 같은 팀원간의 협력과 전략이 중요한 요소 중에 하나이다. 이러한 상황에서 악의적의 의도로 자신의 비정상적인 플레이를 한다거나 욕설 등의 팀의 사기를 저하시키는 플레이어들이 문제가 되고 있다. 이러한 플레이어들의 제재를 위해 몇 가지 시스템들이 제안 되고 있지만 그들에 대한 판단은 쉽지 않다. 그래서 본 논문에서는 PageRank 를 기반으로 하는 불량 플레이어의 판단에 대한 보조 시스템을 제안 한다. 이 시스템의 MOBA 게임 플레이어의 플레이 횟수, 신고 횟수, 신고 받은 횟수 등의 자료들을 이용하여 플레이어의 Judgment Points 와 Bad Player 지수를 파악하며 이를 기반으로 생성된 Bad Player 랭킹을 통하여 불량 플레이어 검색에 도움을 줄 것으로 예상된다.

Adaboost와 깊이 맵 기반의 블록 순위 패턴의 템플릿 매칭을 이용한 얼굴검출 (Face Detection Using Adaboost and Template Matching of Depth Map based Block Rank Patterns)

  • 김영곤;박래홍;문성수
    • 방송공학회논문지
    • /
    • 제17권3호
    • /
    • pp.437-446
    • /
    • 2012
  • 흑백 혹은 컬러 영상과 같은 2차원 정보를 사용한 얼굴 검출 알고리즘에 관한 연구가 수십 년 동안 이루어져 왔다. 최근에는 저가 range 센서가 개발되어, 이를 통해 3차원 정보 (깊이 정보: 카메라와 물체사이의 거리를 나타냄)를 손쉽게 이용함으로써 얼굴의 특징을 높은 신뢰도로 추출하는 것이 가능해졌다. 대부분 사람 얼굴에는 3차원적인 얼굴의 구조적인 특징이 있다. 본 논문에서는 흑백 영상과 깊이 영상을 사용하여 얼굴을 검출하는 알고리즘을 제안한다. 처음에는 흑백 영상에 adaboost를 적용하여 얼굴 후보 영역을 검출한다. 얼굴 후보 영역의 위치에 대응되는 깊이 영상에서의 얼굴 후보 영역을 추출한다. 추출된 영역의 크기를 $5{\times}5$ 영역으로 분할하여 깊이 값의 평균값을 구한다. 깊이 값들의 평균값들 간에 순위를 매김으로써 블록 순위 패턴이 생성된다. 얼굴 후보 영역의 블록 순위 패턴과 학습 데이터를 사용하여 미리 학습된 템플릿 패턴을 매칭함으로써 최종 얼굴 영역인지 아닌지를 판단할 수 있다. 제안하는 방법의 성능을 Kinect sensor로 취득한 실제 영상으로 실험하였다. 실험 결과 true positive를 잘 보존하면서 많은 false positive들을 효과적으로 제거하는 것을 보여준다.

바지선 적재 문제의 최대이득 물품 우선 적재 알고리즘 (Maximum Profit Priority Goods First Loading Algorithm for Barge Loading Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.169-173
    • /
    • 2014
  • 최적 해를 다항시간으로 얻을 수 있는 알고리즘이 알려져 있지 않은 NP-완전인 상자포장 문제의 일종인 바지선 적재 문제에 대해, Gu$\acute{e}$ret et al.은 $O(m^4)$ 수행 복잡도의 선형계획법으로 해를 얻고자 하였다. 반면에, 본 논문에서는 이득 우선순위로 적재하는 규칙인 O(m log m) 복잡도의 알고리즘을 제안하였다. 제안된 방법은 첫 번째로 이득 우선순위를 결정하였다. 다음으로, 이득 우선순위 물품들을 바지선에 적재하는 방법으로 초기 적재 결과를 얻었다. 마지막으로, 바지선 적재 용량을 미달하는 경우, 이전에 적재된 물품과 미선적된 물품을 상호 교환하여 바지선 적재용량을 충족시켰다. 실험 결과, 제안된 알고리즘은 NP-완전 문제인 바지선 적재 문제에 대해 선형계획법의 $O(m^4)$를 O(m log m)으로 단축시켰다.

소셜 관계 랭크 및 토픽기반_소셜 관계 랭크 알고리즘; 소셜 검색을 향해 (SRR(Social Relation Rank) and TS_SRR(Topic Sensitive_Social Relation Rank) Algorithm; toward Social Search)

  • 박건우;정재학;이상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.364-368
    • /
    • 2009
  • "소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.

적응 L-필터의 수렴성 해석 (Convergence Analysis of Adaptive L-Filter)

  • 김수용;배성호
    • 한국멀티미디어학회논문지
    • /
    • 제12권9호
    • /
    • pp.1210-1216
    • /
    • 2009
  • 본 논문에서는 순환최소순위(RLR) L-필터의 수렴성을 해석하였다. RLR L-필터는 순서통계필터로서 입력의 크기순서에 따른 가중치를 필터계수로 한다. 또한 RLR L-필터는 비선형 적응 필터로서 필터계수의 갱신을 위하여 RLR 알고리즘을 이용한다. RLR 알고리즘은 로버스트 통계학의 순위추정에 기초한 비선형 적응 알고리즘이다. 본 논문에서는 가변적인 스텝 크기를 적용하여 평균 및 평균제곱의 견지에서 수렴성을 해석하였다. RLRL-필터는 잡음의 분포함수가 두꺼운 꼬리 분포인 임펄스 잡음에 가까울수록 메디안 필터의 형태로 적응하며 가우시안 잡음의 경우 평균 필터의 형태로 적응한다.

  • PDF

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.