• Title/Summary/Keyword: Ranging Error

Search Result 286, Processing Time 0.028 seconds

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Experimental and Numerical Study on Flow Characteristics of a Common Exhaust System for Multiple SOFCs (SOFC용 복합 배기 시스템 유동 특성에 관한 실험 및 수치해석적 연구)

  • DAEWOONG JUNG;JONGHYUK YOON;HYOUNGWOON SONG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.657-666
    • /
    • 2023
  • In this study, experiments and numerical analysis were conducted to investigate the exhaust gas flow in a common exhaust system of multiple solid oxide fuel cells. The system was fabricated based on KGS code and operated within a pressure range of 0.12 kPa, with flow rates ranging from 79.1 to 103.4 L/min. Numerical modeling was validated with a mean absolute error of 3.8% for pressure results. The study assessed the impact of changes in area ratio and emergency stops on pressure distribution, velocity vectors, and wall shear stress. The findings revealed no significant factors causing high differential pressure or backflow.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Evaluating Laser Beam Parameters for Ground-to-space Propagation through Atmospheric Turbulence at the Geochang SLR Observatory

  • Ji Hyun Pak;Ji Yong Joo;Jun Ho Lee;Ji In Kim;Soo Hyung Cho;Ki Soo Park;Eui Seung Son
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.382-390
    • /
    • 2024
  • Laser propagation through atmospheric disturbances is vital for applications such as laser optical communication, satellite laser ranging (SLR), laser guide stars (LGS) for adaptive optics (AO), and laser energy transmission systems. Beam degradation, including energy loss and pointing errors caused by atmospheric turbulence, requires thorough numerical analysis. This paper investigates the impact of laser beam parameters on ground-to-space laser propagation up to an altitude of 100 km using vertical atmospheric disturbance profiles from the Geochang SLR Observatory in South Korea. The analysis is confined to 100 km since sodium LGS forms at this altitude, and beyond this point, beam propagation can be considered free space due to the absence of optical disturbances. Focusing on a 100-watt class laser, this study examines parameters such as laser wavelengths, beam size (diameter), beam jitter, and beam quality (M2). Findings reveal that jitter, with an influence exceeding 70%, is the most critical parameter for long-exposure radius and pointing error. Conversely, M2, with an influence over 45%, is most significant for short-exposure radius and scintillation.

Location Estimation Method using Extended Kalman Filter with Frequency Offsets in CSS WPAN (CSS WPAN에서 주파수 편이를 보상하는 확장 Kalman 필터를 사용한 이동노드의 위치추정 방식)

  • Nam, Yoon-Seok
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.239-246
    • /
    • 2012
  • The function of location estimation in WPAN has been studied and specified on the ultra wide band optionally. But the devices based on CSS(Chirp Spread Spectrum) specification has been used widely in the market because of its functionality, cheapness and support of development. As the CSS device uses 2.4GHz for a carrier frequency and the sampling frequency is lower than that of the UWB, the resolution of a timestamp is very coarse. Then actually the error of a measured distance is very large about 30cm~1m at 10 m depart. And the location error in ($10m{\times}10m$) environment is known as about 1m~2m. So for some applications which require more accurate location information, it is very natural and important to develop a sophisticated post processing algorithm after distance measurements. In this paper, we have studied extended Kalman filter with the frequency offsets of anchor nodes, and proposed a novel algorithm frequency offset compensated extended Kalman filter. The frequency offsets are composed with a variable as a common frequency offset and constants as individual frequency offsets. The proposed algorithm shows that the accurate location estimation, less than 10cm distance error, with CSS WPAN nodes is possible practically.

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.