DOI QR코드

DOI QR Code

Evaluating Laser Beam Parameters for Ground-to-space Propagation through Atmospheric Turbulence at the Geochang SLR Observatory

  • Ji Hyun Pak (Department of Optical Engineering, Kongju National University) ;
  • Ji Yong Joo (Department of Optical Engineering, Kongju National University) ;
  • Jun Ho Lee (Department of Optical Engineering, Kongju National University) ;
  • Ji In Kim (Hanwha Systems) ;
  • Soo Hyung Cho (Hanwha Systems) ;
  • Ki Soo Park (Defense Rapid Acquisition Technology Research Institute (DRATRI)) ;
  • Eui Seung Son (Defense Rapid Acquisition Technology Research Institute (DRATRI))
  • Received : 2024.07.03
  • Accepted : 2024.07.22
  • Published : 2024.08.25

Abstract

Laser propagation through atmospheric disturbances is vital for applications such as laser optical communication, satellite laser ranging (SLR), laser guide stars (LGS) for adaptive optics (AO), and laser energy transmission systems. Beam degradation, including energy loss and pointing errors caused by atmospheric turbulence, requires thorough numerical analysis. This paper investigates the impact of laser beam parameters on ground-to-space laser propagation up to an altitude of 100 km using vertical atmospheric disturbance profiles from the Geochang SLR Observatory in South Korea. The analysis is confined to 100 km since sodium LGS forms at this altitude, and beyond this point, beam propagation can be considered free space due to the absence of optical disturbances. Focusing on a 100-watt class laser, this study examines parameters such as laser wavelengths, beam size (diameter), beam jitter, and beam quality (M2). Findings reveal that jitter, with an influence exceeding 70%, is the most critical parameter for long-exposure radius and pointing error. Conversely, M2, with an influence over 45%, is most significant for short-exposure radius and scintillation.

Keywords

Acknowledgement

Defense Rapid Acquisition Technology Research Institute (DRATRI) grant funded by the Defense Acquisition Program Administration (DAPA) (Grant no. UC200013D).

References

  1. I. Rasheed, G. Sodhi, and R. Malhotra, "Optimizing data transmission: Analyzing FSO based DWDM system in turbulent environments," in Proc. 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)-ICRITO (Noida, India, Mar. 14-15, 2024), pp. 1-6.
  2. T. Koonen, K. Mekonnen, Z. Cao, F. Huijskens, N. Q. Pham, and E. Tangdiongga, "Ultra-high-capacity wireless communication by means of steered narrow optical beams," Philos. Trans. R. Soc. A 378, 20190192 (2020).
  3. K. Ahn, S.-H. Lee, I.-K. Park, and H.-S. Yang, "Simulation of a laser tomography adaptive optics with Rayleigh laser guide stars for the satellite imaging system," Curr. Opt. Photonics 5, 101-113 (2021). https://doi.org/10.3807/COPP.2021.5.2.101
  4. K. Sosnica, D. Thaller, R. Dach, P. Steigenberger, G. Beutler, D. Arnold, and A. Jaggi, "Satellite laser ranging to GPS and GLONASS," J. Geod. 89, 725-743 (2015). https://doi.org/10.1007/s00190-015-0810-8
  5. S. A. Ahmed, M. Mohsin, and S. M. Z. Ali, "Survey and technological analysis of laser and its defense applications," Def. Technol. 17, 583-592 (2021). https://doi.org/10.1016/j.dt.2020.02.012
  6. B. Acherjee, "Laser transmission welding of polymers - A review on process fundamentals, material attributes, weldability, and welding techniques," J. Manuf. Process. 60, 227-246 (2020). https://doi.org/10.1016/j.jmapro.2020.10.017
  7. D. Giggenbach and A. Shrestha, "Atmospheric absorption and scattering impact on optical-satellite-ground links," Int. J. Satell. Commun. Netw. 40, 157-176 (2022). https://doi.org/10.1002/sat.1426
  8. M. Eshagh, Satellite Gravimetry and the Solid Earth: Mathematical Foundations (Elsevier, Netherland, 2020).
  9. S. Yoon, W. Moon, and H. Kim, "Number of phase screens required for simulation of a high-energy laser beam's propagation experiencing atmospheric turbulence and thermal blooming," Korean J. Opt. Photonics 35, 49-60 (2024).
  10. Q. Li, Z. Zhang, Y. Li, X. Ji, and X. Li, "Analytical study on the upward laser beam propagation in the turbulent atmosphere," J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 41, 1347-1352 (2024). https://doi.org/10.1364/JOSAA.521344
  11. L. Pu, X. Li, and X. Ji, "Effect of self-focusing on propagation of a laser beam in the atmosphere along a slant path," IEEE Photonics J. 15, 3000506 (2023).
  12. Z. Hang, X. Ji, Y. Deng, X. Li, and T. Wang, "Optimal power of laser beams propagating from the ground through the atmosphere to space orbits," Opt. Commun. 498, 127210 (2021).
  13. Y. Wang, Q. Zhao, and K. Jiang, "Precise orbit determination of LEO satellite using onboard BDS-3 B1C/B2a observations," in Proc. China Satellite Navigation Conference 2022-CSNC (Beijing, China, May 25-27, 2022), pp. 134-146.
  14. M. Drozdzewski and K. Sosnica, "Tropospheric and range biases in Satellite Laser Ranging," J. Geod. 95, 100 (2021).
  15. H.-G. Oh, P. Kang, J. Lee, H.-G. Rhee, Y.-S. Ghim, and J. H. Lee, "Fabrication of phase plate to simulate turbulence effects on an optical imaging system in strong atmospheric conditions," Curr. Opt. Photonics 8, 259-269 (2024).
  16. J. Y. Joo, S. G. Han, J. H. Lee, H. G. Rhee, J. Huh, K. Lee, and S. Y. Park, "Development and characterization of an atmospheric turbulence simulator using two rotating phase plates," Curr. Opt. Photonics 6, 445-452 (2022). https://doi.org/10.3807/COPP.2022.6.5.445
  17. B. Y. Kim, J. H. Lee, and Y. S. Choi, "Characterization of the horizontal optical turbulence (Cn2) data measured at Kongju and Cheonan," J. Korean Phys. Soc. 66, 1680-1686 (2015). https://doi.org/10.3938/jkps.66.1680
  18. J. Y. Joo, H. S. Ha, J. H. Lee, D. H. Jung, Y. S. Kim, and T. Butterley, "SLODAR system development for vertical atmospheric disturbance profiling at Geochang Observatory," Curr. Opt. Photonics 8, 30-37 (2024).
  19. H. Lim, M. Choi, E. Park, S. Yu, K. P. Sung, J. U. Park, and C. S. Choi, "The new Korean SLR system and its automatic operation," in Proc. 2017 International Laser Ranging Service Technical Workshop (Riga, Latvia, Oct. 2-5, 2017), pp. 2-5.
  20. J. H. Lee, S. E. Lee, and Y. J. Kong, "Performance prediction of a laser-guide star adaptive optics system for a 1.6 m telescope," Curr. Opt. Photonics 2, 269-279 (2018).
  21. J. H. Lee, S. Shin, G. N. Park, H.-G. Rhee, and H.-S. Yang, "Atmospheric turbulence simulator for adaptive optics evaluation on an optical test bench," Curr. Opt. Photonics 1, 107-112 (2017).  https://doi.org/10.3807/COPP.2017.1.2.107