• Title/Summary/Keyword: Range-Doppler Image

Search Result 42, Processing Time 0.029 seconds

${\mu}$-wave imging by range-doppler method using the Linear-FM singnal (Linear-FM을 사용한 Range-Doppler 방식의 마이크로웨이브 영상)

  • Shu, Kyoung-Whoan;Lee, Gyoung-Soo;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.26-29
    • /
    • 1987
  • This paper concerns methods for ${\mu}$-wave imaging. The image reconstruction of an object by range-doppler preceding using the X-Band Linear-FM signal is presented from tile simulated data. The high degree of range resolution is achived using large signal band width and cross-range resolution is obtained by doppler processing.

  • PDF

Efficient Translational Motion Compensation for Micro-Doppler Extraction of Ballistic Missiles

  • Jung, Joo-Ho;Kim, Si-Ho;Choi, In-O;Kim, Kyung-Tae;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.129-137
    • /
    • 2017
  • When the micro-Doppler (MD) image of a ballistic missile is derived, the translational motion compensation (TMC) method is usually applied to the inverse synthetic aperture radar (ISAR) image, but yields poor results because of the micro-motion of the ballistic missile. This paper proposes an efficient TMC method to obtain a focused MD image of a ballistic missile engaged in complicated micro-motion. During range alignment, range profiles (RPs) are coarsely aligned by using the 1D entropy cost function of RPs as a mark, then the coarsely-aligned RPs are fine-aligned by using the minimum 2D entropy of the MD image. During phase adjustment, the gradient of the phase error is appropriately weighted and added to the previous phase error to further fine-tune the aligned RPs. In simulations using the point scatterer model and the measured data from the real missile model, the proposed method provided better image focus than the existing method.

Forward Mapping of Spaceborne SAR Image Coordinates to Earth Surface

  • Shin, Dong-Seok;Park, Won-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.273-280
    • /
    • 2002
  • This paper describes a mathematical model and its utilization algorithm for calculating the accurate target position on the ellipsoidal earth surface which corresponds to a range-azimuth coordinates of unprocessed synthetic aperture radar (SAR) images. A geometrical model which is a set of coordinate transformations is described. The side-looking directional angle (off-nadir angle) is determined in an iterative fashion by using the model and the accurate slant range which is calculated from the range sampling timing of the instrument. The algorithm can be applied not only for the geolocation of SAR images but also for the high quality SAR image generation by calculating accurate Doppler parameters.

Compact and versatile range-finding speedometer with wide dynamic range

  • Shinohara, Shigenobu;Pan, Derong;Kosaka, Nozomu;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.158-161
    • /
    • 1995
  • A new laser diode range-finding speedometer is proposed, which is modulated by a pair of positive and negative triangular pulse current superimposed on a dc current. Since a target velocity is directly obtained form a pure Doppler beat frequency measured during the non-modulation period, the new sensor is free from the difficulties due to the critical velocity encountered in the previous sensor. Furthermore, the different amplitude of the two triangular pluses are so adjusted that the measurable range using only one laser head is greatly expanded to 10cm through 150cm, which is about two times that of the previous sensor. The measurement accuracy for velocity of .+-.6mm/s through .+-.20mm/s and for range is about 1%, and 2%, respectively. Because the new sensor can be operated automatically using a microcomputer, it will be useful for application of a 3-D range image measurement of a slowly moving object.

  • PDF

Measurement of Cloud Velocity and Altitude Using Lidar's Range Detection and Digital Image Correlation

  • Park, Nak-Gyu;Baik, Sung-Hoon;Park, Seung-Kyu;Kim, Dong-Lyul;Kim, Duk-Hyeon;Choi, In-Young
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.605-610
    • /
    • 2014
  • Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements because there is no Doppler effect if the clouds move in the perpendicular direction to the laser beam path of Doppler lidar. In this paper, we present a method for the measurement of cloud velocity using lidar's range detection and DIC (Digital Image Correlation) system to overcome the disadvantage of Doppler lidar. The lidar system acquires the distance to the cloud, and the cloud images are tracked using the developed fast correlation algorithm of DIC. We acquired the velocities of clouds using the calculated distance and DIC algorithm. The measurement values had a linear distribution.

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

Improved object recognition performance of UWB radar according to different window functions

  • Nguyen, Trung Kien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.395-402
    • /
    • 2019
  • In this paper, we implemented an Ultra-Wideband radar system using Stripmap Synthetic Apertrure Radar algorithm to recognize objects inside a box. Different window functions such as Hanning, Hamming, Kaiser, and Taylor functions to improve image recognition performance are applied and implemented to radar system. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to recognize the conductor plate located inside 1m3 box. To obtain the image, we use the propagation data in the time domain according to the 1m movement distance and use the Range Doppler algorithm. The effect of different window functions to improve the recognition performance of the image are analyzed. From the compared results, we confirmed that the Kaiser window function can obtain a relatively good image.

VELOCITY ESTIMATION OF MOVING TARGETS BY AZIMUTH DIFFERENTIALS OF SAR IMAGES;PRELIMINARY RESULTS

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.625-628
    • /
    • 2007
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well known phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We adopted a method estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on an assumption that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved. This technique is tested using an ENVISAT ASAR image in which several unknown ships are presented. The theoretical accuracy of this technique is discussed by SAR simulation. The advantages and disadvantages of this method over the conventional method are also discussed.

  • PDF

GEOCODING OF SAR IMAGE USING THE ORBIT AND ATTITUDE DETERMINATION OF RADARSAT (RADARSAT 위성의 궤도결정과 자세결정을 이용한 SAR 영상의 자리매김)

  • 소진욱;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.183-196
    • /
    • 1998
  • The Synthetic Aperture Radar(SAR) image and the Digital Elevation Model(DEM) of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is put in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates), but in this reserch the inverse method(mapping from geographic coordinates to image coordinates) is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between space-borne radar and target. And the relative motion is described in ECIC(earth-centered-initial coordinates) using Doppler equation and signal acquisition geometry.

  • PDF

Multifrequency Imaging of Radar Turntable by Phase and Amplitude Measurement (다주파수 신호를 사용한 회전물체의 위상과 진폭측정에 의한 영상)

  • Suh, Kyoung-Whoan;Lee, Kyoung-Soo;Kim, Se-Youn;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.392-397
    • /
    • 1987
  • This paper concerns a method for micro-wave imaging. The image reconstruction of a perfect conducting cylinder by phase and amplitude measurement using the X-Band multifrequency is presented troll the simulated data. The high degree of range resolution is achieved using large signal band-width and cross-range resolution is obtained by doppler processing. The comparison of image reconstruction between range doppler processing and circular convolution algorithm is also shown.

  • PDF