• 제목/요약/키워드: Range simulator

Search Result 362, Processing Time 0.025 seconds

Vision-based Ground Test for Active Debris Removal

  • Lim, Seong-Min;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

Association between Object and Sonar Target for Post Analysis of Submarine Engaged Warfare Simulation (잠수함 교전 시뮬레이션의 사후분석을 위한 객체와 소나 표적간의 연관 기법)

  • Kim, Junhyeong;Bae, Keunsung
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a method to generate the object-target identifier mapping information for system performance and effectiveness analysis of submarine engage system and verify the validity of the proposed method through experiments. In the submarine model of the engage simulator, the signal processing algorithm of the actual sonar system is installed. In the target information obtained through the sonar or signal processing process, the actual object information is not known, and the simulator does not provide such information. Therefore, in this study, we generated identifier mapping information for simulation post-analysis by using bearing, range, and speed of the target obtaind from sonar signal processing and the object collected.

Faster-than-real-time Hybrid Automotive Underwater Glider Simulation for Ocean Mapping

  • Choi, Woen-Sug;Bingham, Brian;Camilli, Richard
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2022
  • The introduction of autonomous underwater gliders (AUGs) specifically addresses the reduction of operational costs that were previously prohibited with conventional autonomous underwater vehicles (AUVs) using a "scaling-down" design philosophy by utilizing the characteristics of autonomous drifters to far extend operation duration and coverage. Long-duration, wide-area missions raise the cost and complexity of in-water testing for novel approaches to autonomous mission planning. As a result, a simulator that supports the rapid design, development, and testing of autonomy solutions across a wide range using software-in-the-loop simulation at faster-than-real-time speeds becomes critical. This paper describes a faster-than-real-time AUG simulator that can support high-resolution bathymetry for a wide variety of ocean environments, including ocean currents, various sensors, and vehicle dynamics. On top of the de facto standard ROS-Gazebo framework and open-sourced underwater vehicle simulation packages, features specific to AUGs for ocean mapping are developed. For vehicle dynamics, the next-generation hybrid autonomous underwater gliders (Hybrid-AUGs) operate with both the buoyancy engine and the thrusters to improve navigation for bathymetry mappings, e.g., line trajectory, are is implemented since because it can also describe conventional AUGs without the thrusters. The simulation results are validated with experiments while operating at 120 times faster than the real-time.

Modeling and Simulation of Road Noise by Using an Autoregressive Model (자기회귀 모형을 이용한 로드노이즈 모델링과 시뮬레이션)

  • Kook, Hyung-Seok;Ih, Kang-Duck;Kim, Hyoung-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.888-894
    • /
    • 2015
  • A new method for the simulation of the vehicle's interior road noise is proposed in the present study. The road noise model can synthesize road noise of a vehicle for varying driving speed within a range. In the proposed method, interior road noise is considered as a stochastic time-series, and is modeled by a nonstationary parametric model via two steps. First, each interior road noise signal, obtained from constant speed driving tests performed within a range of speed, is modeled as an autoregressive model whose parameters are estimated by using a standard method. Finally, the parameters obtained for different driving speeds are interpolated based on the varying driving speed to yield a time-varying autoregressive model. To model a full band road noise, audible frequency range is divided into an octave band using a wavelet filter bank, and the road noise in each octave band is modeled.

Range Design of Pulse Repetition Frequency for Removal of SAR Residual Image (영상레이더 잔상 제거를 위한 펄스 반복 주파수의 범위 설계)

  • Kim, Kyeong-Rok;Heo, Min-Wook;Kim, Tu-Hwan;Ryu, Sang-Burm;Lee, Sang-Gyu;Lee, Hyeon-Cheol;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1653-1660
    • /
    • 2016
  • The synthetic aperture rardar (SAR) is an active sensor using microwaves. It transmits a microwave signal, called a chirp pulse, and receives the reflected signal in a moving platform such as satellite and unmanned aerial vehicle. Since this sensor uses microwaves that can penetrate the atmosphere, SAR generates the images regardless of light and weather conditions. However SAR operates on the moving platform, the Doppler shift and the side-looking observation method should be considered. In addtion, a residual image or ghost image can be occurred according to selection of the pulse repetition frequency (PRF). In this paper, a range design of the PRF for the L-band spaceborne SAR system is studied for prevention of SAR image distortion. And the system is studied for prevention of SAR image distortion. And the system parameter and the PRF are calibrated iteratively according to the proposed system design procedure and design constraints. The MATLAB based on SAR system simulator has been developed to verify the validity of calculated PRF. The developed simulator assumes that SAR sensor is operated by the PRF calculated from the design. The results of the simulator show that the targets in image has a valid peak to side-lobe ratio (PSLR) so that the PRF can be used for the spaceborne SAR sensor.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

The Study on the Internet-based Virtual Apartment Remodeling and Auto Estimation Simulator (인터넷 기반의 아파트 리모델링 및 자동 내역산출을 위한 시뮬레이터 디자인 연구)

  • 서재은;김성곤
    • Archives of design research
    • /
    • v.15 no.1
    • /
    • pp.191-202
    • /
    • 2002
  • As family types have been diverse, patterns of living and living space became diverse as much as users are. Therefore, it is needed to provide various remodeled design of living space corresponding to changes of users'living patterns, and to provide these remodeling process to users directly on the web. In this paper, use scenario for the Internet-based Virtual Apartment Remodeling Simulator is researched as an export system to remodel space in accordance with users diverse lifestyle paradigm and the website is developed. The study consists of four parts. First, the general concept of remodeling, including the range and types of remodeling, are defined, and the misleading terms in this field are reviewed and organized by secondary research Second, fixed factors and variable factors are differentiated in the complex building for residence and business that was decided as a basic building type in this study. Third, there needed a database for consulting, final material, pre-estimation real estimation for simulation of remodeling. This database was introduced along with floor plan and elevation. Finally, the remodeling simulator is presented by the case study developed on the web. The system structure and use scenario are also presented. In order to present and inspect design alternatives, prototype was produced. The Final simulator was enhanced by defeating problems regarding interface efficiency and missing information of existing online site.

  • PDF

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

Development of Simulator for CBRN Reconnaissance Vehicle-II(Armored Type) (화생방정찰차-II(장갑형)용 모의훈련장비(시뮬레이터) 개발)

  • Lee, Sang Haeng;Seo, Seong Man;Lee, Yun Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.45-54
    • /
    • 2022
  • This paper is about designing and implementing the simulation training equipment (simulator) for the CBRN Reconnaissance Vehicle-II (armor type). The simulation training equipment (simulator) is a military training equipment in a virtual environment that analyzes the training using various CBRN equipment according to the CBRN situation and make a professional report. The controller or training instructor can construct a scenario using the instructor control system for a possible CBRN situation, spread the situation, and observe the process of the trainee performing the propagated situation appropriately. All process can be monitored and analyzed by the system, and it can be recorded, so it is also used for AAR (After Action Review). To implement CBRN situation training in a virtual environment, instructor control (IOS), host (HOS), video (IGS), input/output device (IOC), and sound (ACS) were implemented, a long-range chemical automatic detector (LCA), a combined chemical detector (CAD), a control (MCC) and an operation (OCC) computer were developed as simulators. In this paper, the design and development of simulation training equipment for CBRN Reconnaissance Vehicle-II (armor type) was conducted, and the performance was verified through integrated tests and acceptance tests.

A study on the image formation system variable and performance analysis for optimum design of high resolution SAR (고해상도 SAR 최적 설계를 위한 영상형성 시스템 변수 및 성능분석에 관한 연구)

  • Kwak, Jun-Young;Jeong, Dae-Gwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.49-60
    • /
    • 2012
  • Synthetic aperture radar (SAR) has been employed in various fields due to its capability to generate high resolution images regardless of weather and visibility. This paper presents a performance analysis on the image formation of high resolution SAR according to various slant range distance and synthetic aperture lengths using a range migration algorithm simulator. Although the visual performance on the SAR image is more accurate, a numeric analysis resulted in a comparable measurement. More specifically, raw data were generated for an ideal point target upon imaging geometries and design parameters such as slant range distance and synthetic aperture lengths. Finally, spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio are drawn to provide SAR capabilities in the initial concept design, final in-flight calibration and validation stages.