• Title/Summary/Keyword: Range prediction

Search Result 1,583, Processing Time 0.027 seconds

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool (얕은 감세지내의 극한 세굴잠재능 예측)

  • 손광익
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.123-131
    • /
    • 1994
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threatens the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new scour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variale, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on a movable bed made of large spherical particles.

  • PDF

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors (광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측)

  • Kim, Hwa-Su;Kwak, Chong-Heum;So, Seon-Sup;Suh, Myoung-Seok;Park, Chung-Kyu;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.587-596
    • /
    • 2002
  • A super ensemble model was developed for the seasonal prediction of regional precipitation in Korea using the lag correlated large scale predictors, based on the empirical orthogonal function (EOF) analysis and multiple linear regression model. The predictability of this model was also evaluated by cross-validation. Correlation between the predicted and the observed value obtained from the super ensemble model showed 0.73 in spring, 0.61 in summer, 0.69 in autumn and 0.75 in winter. The predictability of categorical forecasting was also evaluated based on the three classes such as above normal, near normal and below normal that are clearly defined in terms of a priori specified by threshold values. Categorical forecasting by the super ensemble model has a hit rate with a range from 0.42 to 0.74 in seasonal precipitation.

A Dynamic Offset and Delay Differential Assembly Method for OBS Network

  • Sui Zhicheng;Xiao Shilin;Zeng Qingji
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.234-240
    • /
    • 2006
  • We study the dynamic burst assembly based on traffic prediction and offset and delay differentiation in optical burst switching network. To improve existing burst assembly mechanism and build an adaptive flexible optical burst switching network, an approach called quality of service (QoS) based adaptive dynamic assembly (QADA) is proposed in this paper. QADA method takes into account current arrival traffic in prediction time adequately and performs adaptive dynamic assembly in limited burst assembly time (BAT) range. By the simulation of burst length error, the QADA method is proved better than the existing method and can achieve the small enough predictive error for real scenarios. Then the different dynamic ranges of BAT for four traffic classes are introduced to make delay differentiation. According to the limitation of BAT range, the burst assembly is classified into one-dimension limit and two-dimension limit. We draw a comparison between one-dimension and two-dimension limit with different prediction time under QoS based offset time and find that the one-dimensional approach offers better network performance, while the two-dimensional approach provides strict inter-class differentiation. Furthermore, the final simulation results in our network condition show that QADA can execute adaptive flexible burst assembly with dynamic BAT and achieve a latency reduction, delay fairness, and offset time QoS guarantee for different traffic classes.

The behaviour of strength and fatigue crack propagation of various steels in steel bridges (철강구조물 부재의 강도평가 및 피로균열진전거동)

  • Han, Seung-Ho;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1694-1701
    • /
    • 1997
  • The residual safety assessment of steel structures, an important subject in practice, is given to much attention. Life prediction in the planning course of steel structures under fatigue loading is mainly based on fatigue design criteria resulting from S-N curves. But for any reason cracks have to be assumed due to fabrication failures or fatigue loading in service which can lead total fracture of structures. The life prediction can be carried out by means of fracture mechanics using Paris-Erdogan equation($da/dN=C {\cdot}{\Delta}K^m$). The paper presents results from charpy test to interpret transition behaviour of charpy energy($A_V$) in a wide temperature range and from constant-load-amplitude test to measure fatigue crack growth of various steels widely used in steel bridges since beginning of 20 centuries in Europe. In the normal service temperature range of steel bridges, the steel S355M shows higher maximum charpy energy($A_{Vmax}$) and lower transition temperature($T_{AVmax/2}$) than other steels considered. The C and m of Paris-Erdogan equation on the steels appear to be correlated, and to be affected by the R-ratios due to crack closure, especially at a low fatigue crack growth rate. Scanning electron microscopy analysis was carried out to interpret an influence of the crack closure effects on the correlation of C and m.

Non-destructive and Rapid Prediction of Moisture Content in Red Pepper (Capsicum annuum L.) Powder Using Near-infrared Spectroscopy and a Partial Least Squares Regression Model

  • Lim, Jongguk;Mo, Changyeun;Kim, Giyoung;Kang, Sukwon;Lee, Kangjin;Kim, Moon S.;Moon, Jihea
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.184-193
    • /
    • 2014
  • Purpose: The aim of this study was to develop a technique for the non-destructive and rapid prediction of the moisture content in red pepper powder using near-infrared (NIR) spectroscopy and a partial least squares regression (PLSR) model. Methods: Three red pepper powder products were separated into three groups based on their particle sizes using a standard sieve. Each product was prepared, and the expected moisture content range was divided into six or seven levels from 3 to 21% wb with 3% wb intervals. The NIR reflectance spectra acquired in the wavelength range from 1,100 to 2,300 nm were used for the development of prediction models of the moisture content in red pepper powder. Results: The values of $R{_V}{^2}$, SEP, and RPD for the best PLSR model to predict the moisture content in red pepper powders of varying particle sizes below 1.4 mm were 0.990, ${\pm}0.487%$ wb, and 10.00, respectively. Conclusions: These results demonstrated that NIR spectroscopy and a PLSR model could be useful techniques for measuring rapidly and non-destructively the moisture content in red pepper powder.

Development and Validation of Multiple Regression Models for the Prediction of Effluent Concentration in a Sewage Treatment Process (하수처리장 방류수 수질예측을 위한 다중회귀분석 모델 개발 및 검증)

  • Min, Sang-Yun;Lee, Seung-Pil;Kim, Jin-Sik;Park, Jong-Un;Kim, Man-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.312-315
    • /
    • 2012
  • In this study, the model which can predict the quality of effluent has been implemented through multiple regression analysis to use operation data of a sewage treatment plant, to which a media process is applied. Multiple regression analysis were carried out by cases according to variable selection method, removal of outliers and log transformation of variables, with using data of one year of 2011. By reviewing the results of predictable models, the accuracy of prediction for $COD_{Mn}$ of treated water of secondary clarifiers was over 0.87 and for T-N was over 0.81. Using this model, it is expected to set the range of operating conditions that do not exceed the standards of effluent quality. In conclusion, the proper guidance on the effluent quality and energy costs within the operating range is expected to be provided to operators.

Feasibility Study for an Optical Sensing System for Hardy Kiwi (Actinidia arguta) Sugar Content Estimation

  • Lee, Sangyoon;Sarkar, Shagor;Park, Youngki;Yang, Jaekyeong;Kweon, Giyoung
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.147-157
    • /
    • 2019
  • In this study, we tried to find out the most appropriate pre-processing method and to verify the feasibility of developing a low-price sensing system for predicting the hardy kiwis sugar content based on VNIRS and subsequent spectral analysis. A total of 495 hardy kiwi samples were collected from three farms in Muju, Jeollabukdo, South Korea. The samples were scanned with a spectrophotometer in the range of 730-2300 nm with 1 nm spectral sampling interval. The measured data were arbitrarily separated into calibration and validation data for sugar content prediction. Partial least squares (PLS) regression was performed using various combinations of pre-processing methods. When the latent variable (LV) was 8 with the pre-processing combination of standard normal variate (SNV) and orthogonal signal correction (OSC), the highest R2 values of calibration and validation were 0.78 and 0.84, respectively. The possibility of predicting the sugar content of hardy kiwi was also examined at spectral sampling intervals of 6 and 10 nm in the narrower spectral range from 730 nm to 1200 nm for a low-price optical sensing system. The prediction performance had promising results with R2 values of 0.84 and 0.80 for 6 and 10 nm, respectively. Future studies will aim to develop a low-price optical sensing system with a combination of optical components such as photodiodes, light-emitting diodes (LEDs) and/or lamps, and to locate a more reliable prediction model by including meteorological data, soil data, and different varieties of hardy kiwi plants.

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma;Sai Li;Xuanyi Zhou;Yuanchun Sun;Zihan Cui;Ziqi Tang
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2023
  • Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.