• Title/Summary/Keyword: Range distance error

Search Result 247, Processing Time 0.026 seconds

Trajectory Optimization in Consideration of Inertial Navigation Errors

  • Ryoo, Chang-Kyung;Kim, Jong-Ju;Cho, Hang-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.2-125
    • /
    • 2001
  • Inertial navigation error is the major source of miss distance when only the inertial navigation system is used for guidance, and tend to monotonically increase if the flight time is small compared to the Schuler period. Miss distance due to these inertial navigation errors, therefore, can be minimized when a missile has the minimum time trajectory. Moreover, vertical component of navigation error becomes null if he impact angle to a surface target approaches to 90 degrees. In this paper, the minimum time trajectories with the steep terminal impact angle constraint are obtained by using CFSQP 2.5, and their properties are analyzed to give a guideline for he construction of an effective guidance algorithm for short range tactical surface-to-surface missiles.

  • PDF

Measurement of Focal Length for Off-axis Optical Systems

  • Choe, Se-woon;Ryu, Jaemyung
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.402-408
    • /
    • 2021
  • An off-axis system refers to an optical system in which the optical axis and normal vector at the vertex of each surface do not match. The most important specification in an optical system is its focal length. Among the various methods for measuring the focal length, the most suitable method for the off-axis system is the method that adopts magnification. However, head-mounted display (HMD) optics must be measured while considering the virtual image distance, which is not infinity owing to product characteristics. For the virtual image distance, a camera with a focusing function was used. By measuring HMD optics via this magnification method, the error generated in this measurement was 0.68% of the HMD's focal length, which is within the 1%-3% range of the conventionally permitted design error for the focal length allowed at the optical design stage. Therefore, it can be verified that the measurement accuracy of the method proposed in this study is sufficiently feasible in practice.

Development of large-scale 3D printer with position compensation system (구동부 변위의 보상이 가능한 지능형 대형 3D 프린터 개발)

  • Lee, Woo-Song;Park, Sung-Jin;Park, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Based on accurate image processing technology, a system for measuring displacement in ${\mu}m$ for drive error (position error, straightness error, flatness error) at a distance using parallel light and image sensor is developed, and a system for applying this technology development to a large 3D rapid prototyping machine and compensating in real time is developed to dramatically reduce the range of measurement error and enable intelligent 3D production of high quality products.

A Study on LED Distance Recognition Measure Using Distance Measurement Correction Algorithm (거리계산 보정 알고리즘을 이용한 LED 거리 인식 측정에 관한 연구)

  • Kim, Ji-Seong;Jung, Dae-Chul;Kim, Yong-Kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • In this paper, Distance recognition measurement using distance calculation correction algorithm, was realization through LED dimming control. The calculation values for the RSSI average filtering and the RSSI feedback filtering were calculated and applied to reduce the error of the RSSI value measured from a long distance. It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements. A distance calculation correction algorithm to improve the accuracy was applied, which confirmed that as the distance increases, the range of errors decreases. In conclusion, unstable signals were corrected using the RSSI measurement result filtering, and the distance calculation correction algorithm was applied and performed to reduce the range of errors. In addition, RGB colors were implemented by LED to indicate the distance determination and the signal stability.

The Lens Design Technique of High Precision Laser Range Finder (고정밀 레이저 거리계용 렌즈 설계 기법)

  • Bae, Young-Chul;Cho, Eui-Joo;Lee, Hyen-Jae;Kim, Sung-Hyen;Kim, Hyeon-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • A lens which is one of cores for the high precision laser range finder is utilized to compute the distance by measuring the phase displacement. In order to measure the phase displacement, we transmit the optical signal from the laser diode to a target and receive the reflected laser light from the target. In this paper, we propose new lens design technique to solve the problem due to the inconsistent curvature of the lens, which consistently collects optical signals and performs the transmission and reception of the optical data, and test the implementation of the laser range finder based on the proposed technique. Since the proposed laser range finder has low error rate comparing to the conventional techniques, it may be apply to the high precision distance measurement.

  • PDF

Channel Coding-Aided Multi-Hop Transmission for Throughput Enhancement

  • Hwang, Inchul;Wang, Hanho
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2016
  • Wireless communication chipsets have fixed transmission rate and communication distance. Although there are many kinds of chipsets with throughput and distance purpose, they cannot support various types of wireless applications. This paper provides theoretic research results in order to support various wireless applications requiring different throughput, delayed quality-of-service (QoS), and different communication distances by using a wireless communication chipset with fixed rate and transmission power. As a performance metric, the probability for a data frame that successfully receives at a desired receiver is adopted. Based on this probability, the average number of transmission in order to make a successful frame transmission is derived. Equations are utilized to analyze the performance of a single-hop with channel coding and a dual-hop without error correction matter transmission system. Our results revealed that single-hop transmission assisted by channel coding could extend its communication distance. However, communication range extending effect of the single-hop system was limited. Accordingly, dual-hop transmission is needed to overcome the communication distance limit of a chipset.

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

Bluetooth AoA based Positioning Scheme using Angle and Distance Validation Test (각도 및 거리 유효성 검사를 적용한 블루투스 도래각 기반의 측위 방식)

  • Song, Kyounghee;Paik, Junghoon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.790-798
    • /
    • 2021
  • In this paper, we propose a method to improve the accuracy of positioning by adding angle and distance validation to the existing Bluetooth-based positioning method using the angle of arrival. In the existing positioning method, an error occurs in the positioning value due to a multipath phenomenon induced in a non-visible distance environment. The proposed method derives the maximum and minimum angles of arrival that can be measured in consideration of the moving speed of the positioned device, and then examines whether the measured angle of arrival exceeds the range of the maximum and minimum angles of arrival. The accuracy of positioning is improved by conducting a distance validation check to see if the location of the device to be positioned and the distance to the positioning device exceed the effective distance. A simulation was conducted to analyze the positioning performance between the proposed method and the existing method, and it was confirmed that the positioning performance was improved through angle and distance validation compared to the existing method in a situation where the positioning error increased through the simulation results.

The Study on Change of Refractive error and Addition in Progressive Eyeglasses Lens Wearers (누진렌즈안경 착용자의 가입도와 굴절이상 변화에 대한 연구)

  • Joo, Seok-Hee;Shim, Moon-Sik;Shim, Jun-Beom
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.399-404
    • /
    • 2013
  • Purpose: This study was to analyse the changes of refractive error and addition in progressive eyeglasses lens wearers. Methods: Data of 244 subjects who have been prescribed progressive eyeglasses lenses were used for analysis. The range of age was between 43~69 old years and they visited the optical shop in Gwangju metropolitan city from 2003 to 2013. According to the refractive state and age, The changes of refractive error and addition was analysed respectively. Results: The changes of distance refractive power by refractive error was showed +0.10 D in emmetropia, +0.07 D in myopia, +0.23 D in hyperopia (p=0.000). The change of addition was showed +0.22 D in emmetropia, +0.29 D in myopia, +0.17 D in hyperopia (p=0.000). The changes of distance power and addition by age was +0.08 D distance refractive power, +0.30 D addition in the group of 40~49 old years, +0.17 D distance refractive power, +0.20 D addition in the group of 50~59 old years and +0.15 D distance refractive power, +0.14 D addition in the group of 60~69 old years (p=0.046, p=0.006). Conclusions: The changes of refractive error and addition of progressive eyeglasses lens wearers in all refractive state and age were gradual increase in the direction (+) diopter.

A Positioning Scheme Using Sensing Range Control in Wireless Sensor Networks (무선 센서 네트워크 환경에서 센싱 반경 조절을 이용한 위치 측정 기법)

  • Park, Hyuk;Hwang, Dongkyo;Park, Junho;Seong, Dong-Ook;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.52-61
    • /
    • 2013
  • In wireless sensor networks, the geographical positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. For this reason, studies on range-free positioning schemes have been actively progressing. The density probability scheme based on central limit theorem and normal distribution was proposed to improve the location accuracy in non-uniform sensor network environments. The density probability scheme measures the final positions of unknown nodes by estimating distance through the sensor node communication. However, it has a problem that all of the neighboring nodes have the same 1-hop distance. In this paper, we propose an efficient sensor positioning scheme that overcomes this problem. The proposed scheme performs the second positioning step through the sensing range control after estimating the 1-hop distance of each node in order to minimize the estimation error. Our experimental results show that our proposed scheme improves the accuracy of sensor positioning by about 9% over the density probability scheme and by about 48% over the DV-HOP scheme.