• Title/Summary/Keyword: Range Query Processing

Search Result 106, Processing Time 0.029 seconds

Efficient Processing of MAX-of-SUM Queries in OLAP (OLAP에서 MAX-of-SUM 질의의 효율적인 처리 기법)

  • Cheong, Hee-Jeong;Kim, Dong-Wook;Kim, Jong-Soo;Lee, Yoon-Joon;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.165-174
    • /
    • 2000
  • Recent researches about range queries in OLAP are only concerned with applying an aggregation operator over a certain region. However, data analysts in real world need not only the simple range query pattern but also an extended range query pattern that finds ranges which satisfy a special condition specified by using several aggregation operators. In this work, we define the general form of the extended range query and propose an efficient processing method for the 'MAX -of-SUM' query, which is the representative form of the extended range query pattern. The MAX-of-SUM query finds the range which has the maximum range sum value in data cube where the size of the range is given. The proposed query processing method is based on the prediction of the scope of the range sum values. That is, the search space on the query processing can be reduced by using the result of the prediction, and hence, the query response time is also reduced.

  • PDF

Efficient Skyline Query Processing Scheme in Mobile P2P Networks (모바일 P2P 네트워크에서 효율적인 스카이라인 질의 처리 기법)

  • Bok, Kyoung-Soo;Park, Sun-Yong;Kim, Dae-Yeon;Lim, Jong-Tae;Shin, Jae-Ryong;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.30-42
    • /
    • 2015
  • In this paper, we propose a new skyline query processing scheme to enhance accuracy of query processing and communication cost in mobile P2P environments. The proposed scheme consists of three stages such as the pre-skyline processing, the query transmission range extension policy, and the continuous skyline query processing. In the pre-skyline processing, a peer selects the candidate filtering objects who have the potential to be selected. By doing so, the proposed scheme reduces the filtering cost when processing the query. In the query transmission range extension policy, we have improved the accuracy by extending the query transmission range. In addition, it can handle continuous skyline query by performing the monitoring after the first skyline query processing. In order to show the superiority of the proposed method, we compare it with the existing schemes through performance evaluation. As a result, it was shown that the proposed scheme outperforms the existing schemes.

Range Query Processing of Distributed Moving Object Databases using Scheduling Technique (스케쥴링 기법을 이용한 분산 이동 객체 데이타베이스의 범위 질의 처리)

  • Jeon, Se-Gil;Hwang, Jae-Il;Nah, Youn-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.51-62
    • /
    • 2004
  • Recently, the location-based service for moving customers is becoming one of the most important service in mobile communication area. For moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. The primary processing of LBS application is spatio-temporal range queries. To improve the throughput of spatio-temporal range queries, the time of disk I/O in query processing should be reduced. In this paper, we adopt non-uniform two-level grid index structures of GALIS architecture,which are designed to minimize update operations. We propose query scheduling technique using spatial relationship and time relationship and a combined spatio-temporal query processing method using time zone concepts to improve the throughput of query processing. Some experimental results are shown for range queries with different query range to show the performance tradeoffs of the proposed methods.

  • PDF

An Efficient Range Query Processing of Distributed Moving Object (분산 이동 객체 데이터베이스의 효율적인 범위 질의 처리)

  • Jeon, Se-Gil;Woo, Chan-Il
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Recently, the location based service for moving customers is becoming one of the most important service in mobile communication area and for moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. The primary processing of LBS application is spatio-temporal range queries and to improve the throughput of spatio-temporal range queries, the time of disk I/O in query processing should be reduced. In this paper, we adopt non-uniform two-level grid index structure, which are designed to minimize update operations. We propose query scheduling technique using spatial relationship and time relationship and a combined spatio-temporal query processing method using time zone concepts to improve the throughput of query processing. Some experimental results are shown for range queries with different query range to show the performance tradeoffs of the proposed methods.

Range and k-Nearest Neighbor Query Processing Algorithms using Materialization Techniques in Spatial Network Databases (공간 네트워크 데이터베이스에서 실체화 기법을 이용한 범위 및 k-최근접 질의처리 알고리즘)

  • Kim, Yong-Ki;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.67-79
    • /
    • 2007
  • Recently, to support LBS(location-based services) and telematics applications efficiently, there have been many researches which consider the spatial network instead of Euclidean space. However, existing range query and k-nearest neighbor query algorithms show a linear decrease in performance as the value of radius and k is increased. In this paper, to increase the performance of query processing algorithm, we propose materialization-based range and k-nearest neighbor algorithms. In addition, we make the performance comparison to show the proposed algorithm achieves better retrieval performance than the existing algorithm.

  • PDF

A Multi-dimensional Range Query Processing using Space Filling Curves (공간 순서화 곡선을 이용한 다차원 영역 질의 처리)

  • Back, Hyun;Won, Jung-Im;Yoon, Jee-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.13-38
    • /
    • 2006
  • Range query is one of the most important operations for spatial objects, it retrieves all spatial objects that overlap a given query region in multi-dimensional space. The DOT(DOuble Transformation) is known as an efficient indexing methods, it transforms the MBR of a spatial object into a single numeric value using a space filling curve, and stores the value in a $B^+$-tree. The DOT index is possible to be employed as a primary index for spatial objects. However, the range query processing based on the DOT index requires much overhead for spatial transformations to get the query region in the final space. Also, the detailed range query processing method for 2-dimensional spatial objects has not been studied yet in this paper, we propose an efficient multi-dimensional range query processing technique based on the DOT index. The proposed technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-legions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the range query and thus improves the performance of range query processing. A visual simulator is developed to show the evaluation method and the performance of our technique.

  • PDF

Power-Aware Query Processing Using Optimized Distributed R-tree in Sensor Networks (센서 네트워크 환경에서 최적화된 분산 R-tree를 이용한 에너지 인식 질의 처리 방법)

  • Pandey Suraj;Eo Sang-Hun;Kim Ho-Seok;Bae Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.13D no.1 s.104
    • /
    • pp.23-28
    • /
    • 2006
  • In this paper, a power-aware query processing using optimized distributed R-tree in a sensor network is proposed. The proposed technique is a new approach for processing range queries that uses spatial indexing. Range queries are most often encountered under sensor networks for computing aggregation values. The previous work just addressed the importance but didn't provide any efficient technique for processing range queries. A query processing scheme is thus designed for efficiently processing them. Each node in the sensor network has the MBR of the region where its children nodes and the node itself are located. The range query is evaluated over the region which intersects the geographic location of sensors. It ensures the maximum power savings by avoiding the communication of nodes not participating over the evaluation of the query.

An Efficient Processing of Continuous Range Queries on High-Dimensional Spatial Data (고차원 공간 데이터를 위한 연속 범위 질의의 효율적인 처리)

  • Jang, Su-Min;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.397-401
    • /
    • 2007
  • Recent applications on continuous queries on moving objects are extended quickly to various parts. These applications need not only 2-dimensional space data but also high-dimensional space data. If we use previous index for overlapped continuous range queries on high-dimensional space data, as the number of continuous range queries on a large number of moving objects becomes larger, their performance degrades significantly. We focus on stationary queries, non-exponential increase of storage cost and efficient processing time for large data sets. In this paper, to solve these problems, we present a novel query indexing method, denoted as PAB(Projected Attribute Bit)-based query index. We transfer information of high-dimensional continuous range query on each axis into one-dimensional bit lists by projecting technique. Also proposed query index supports incremental update for efficient query processing. Through various experiments, we show that our method outperforms the CES(containment-encoded squares)-based indexing method which is one of the most recent research.

Hilbert-curve based Multi-dimensional Indexing Key Generation Scheme and Query Processing Algorithm for Encrypted Databases (암호화 데이터를 위한 힐버트 커브 기반 다차원 색인 키 생성 및 질의처리 알고리즘)

  • Kim, Taehoon;Jang, Miyoung;Chang, Jae-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1182-1188
    • /
    • 2014
  • Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.

A Continuous Range Query Processing of Reciprocal Moving Objects (상호 이동성을 갖는 이동 객체의 연속 범위 질의 처리)

  • Choi, Kil-Seong;Seo, Sang-Seok;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Processing the continuous queries which perform the identical query in given time interval is required because of the continuous change of location of the moving object. Thus the continuous query may cause loads to the server or network and take the cost of processing time because the continuous query is performed in server as the moving object's location changes. In this paper, we propose the query processing technique to perform the continuous range query that is a sort of continuous query effectively The proposed query processing technique predicts the query result and the validity of query answer to perform the continuous query for reciprocal moving object. And it enables to process effectively the query that moves dynamically.

  • PDF