The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.
Kim, Min-Uk;Yang, Seung-Bum;Ahn, Seong-Hoon;Sohn, In-Chul;Kim, Jae-Hyo
Korean Journal of Acupuncture
/
v.29
no.3
/
pp.431-440
/
2012
Objectives : Recently, network science is very popular topic in various scientific fields and many studies have reported that it gives meaningful results on studying characteristics of a complex system. In this study, based on network theory, we made acupoints network using data of combined acupoints which appeared at "Beijiqianjinyaofang". We focused to find out the distinctive roles of remote and local combinations on the network. Furthermore, we aimed to identify the possibility of numerical and quantitative application to acupuncture researches. Methods : Based on examples of combined acupoints in "Beijiqianjinyaofang", the network consisted of 291 nodes and 2,431 links. The spatial distances between combined acupoints were calculated by the human dummy model. We removed the links step by step for the three cases - remote, local, and random cases, and observed the characteristic changes by calculating path lengths, similarity indices, and clustering coefficients. Also cluster analysis was carried out. Results : The network had a small number of remote links, and a large number of local links. These two links had the distinct characteristics. Whereas the local links formed a cluster of nearby nodes, remote links played a role to increase the correlation between the clusters. Conclusions : These results suggest that acupoints network increases the connectivity between the distal part and the trunk of human body, and enables various combinations of the acupoints. This finding conclusively showed that mechanism of combined acupoints could be interpreted meaningfully by applying network theory in acupuncture researches.
Survey research, data is commonly collected through a sample design with complex design features that allow the relative efficiency on the precision of an estimator to be measured using the concept of the design effect compared to simple random sampling as a reference design. This concept is most useful when the design effect can be expressed as a function of various design features. We propose a design effect formula suitable under a stratified multistage sampling by generalizing Gabler et al. (1999, 2006)'s approaches for multistage sampling. Its use can either guide improvement in the design efficiency when in design stage or enable the evaluation of the adopted design features afterwards.
The main issue in software development is the ability of software project effort and cost estimation in the early phase of software life cycle. The regression models for project effort and cost estimation are presented by function point that is a software sire. The data sets used to conduct previous studies are of ten small and not too recent. Applying these models to 789 project data developed from 1990 ; the models only explain fewer than 0.53 $R^2$(Coefficient of determination) of the data variation. Homogeneous group in accordance with project delivery rate (PDR) divides the data sets. Then this paper presents general effort estimation models using project delivery rate. The presented model has a random distribution of residuals and explains more than 0.93 $R^2$ of data variation in most of PDR ranges.
Sarakul, M.;Koonawootrittriron, S.;Elzo, M.A.;Suwanasopee, T.
Asian-Australasian Journal of Animal Sciences
/
v.24
no.8
/
pp.1031-1040
/
2011
The objective of this study was to characterize factors influencing genetic improvement of dairy cattle for milk production at farm level. Data were accumulated from 305-day milk yields and pedigree information from 1,921 first-lactation dairy cows that calved from 1990 to 2007 on 161 farms in Central Thailand. Variance components were estimated using average information restricted maximum likelihood procedures. Animal breeding values were predicted by an animal model that contained herd-year-season, calving age, and regression additive genetic group as fixed effects, and cow and residual as random effects. Estimated breeding values from cows that calved in a particular month were used to estimate genetic trends for each individual farm. Within-farm genetic trends (b, regression coefficient of farm milk production per month) were used to classify farms into 3 groups: i) farms with negative genetic trend (b<-0.5 kg/mo), ii) farms with no genetic trend (-0.5 kg/$mo{\leq}b{\leq}0.5$ kg/mo), and iii) farms with positive genetic trend (b>0.5 kg/mo). Questionnaires were used to gather information from individual farmers on educational background, herd characteristics, farm management, decision making practices, and opinion on dairy farming. Farmer's responses to the questionnaire were used to test the association between these factors and farm groups using Fisher's exact test. Estimated genetic trend for the complete population was $0.29{\pm}1.02$ kg/year for cows. At farm level, most farms (40%) had positive genetic trend ($0.63{\pm}4.67$ to $230.79{\pm}166.63$ kg/mo) followed by farms with negative genetic trend (35%; $-173.68{\pm}39.63$ to $-0.62{\pm}2.57$ kg/mo) and those with no genetic trend (25%; $-0.52{\pm}3.52$ to $0.55{\pm}2.68$ kg/mo). Except for educational background (p<0.05), all other factors were not significantly associated with farm group.
Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
Korean Journal of Agricultural Science
/
v.47
no.3
/
pp.633-644
/
2020
Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.
Journal of the Korean Society of Clothing and Textiles
/
v.40
no.6
/
pp.1150-1163
/
2016
This study makes use of meta-analysis to statistically integrate the quantitative results of individual research on the influence of fashion product attributes on purchase; in addition, this study utilizes the effect sizes of correlation coefficients. This study was based on 24 individual studies from January 2000 to March 2015. The meta-analysis analyzed 91 effect sizes and 24 studies and calculated the correlation coefficient effect sizes. A random effect model was employed for meta-analysis because the results for the homogeneity test indicated that the effect sizes of each research were heterogeneous. The analysis results are as follows. First, when the total effect sizes of the fashion product attributes that influence clothing purchase decisions were calculated as .256; this indicated that the effect size is slightly below the mid-sized level. Second, upon examining the effect sizes of the categorized fashion product attributes, the intrinsic attributes yielded .222, extrinsic factors yielded .235, and the compiled attributes yielded .420; this demonstrated that the compiled attributes have a larger effect size than individual attributes. Third, when they were measured by the characteristics of study targets, they were larger for a mixed-gender group than women as well as for ordinary citizens than university students. When the effect sizes were measured based on the characteristics of fashion products as suggested in the study, there were significant differences with respect to sportswear, followed by SPA brand clothing, general clothing, fashion accessories, and designer clothing. The cases where the clothing were purchased in non-retail stores were found to have a slightly larger effect size than those of offline retail stores when the effect sizes were measured based on purchase routes; however, the difference was not statistically significant. Next, an investigation of the trend of effect sizes based on published year via the meta regression analysis indicated slightly larger effect sizes as shown in more recent publications, but this was not statistically significant.
Objective: To determine whether the gonial angle on digital panoramic radiographs is associated with vitamin D receptor (VDR) Taql polymorphism. Methods: Genomic DNA samples were collected from the buccal mucosa of patients aged 26-43 years. TaqMan assay for single nucleotide polymorphism genotyping was used to detect the genotype of Taql polymorphism. The gonial angle was measured bilaterally on panoramic radiography. The normal gonial angle was fixed as 121.8°, and it represented the cutoff value for the high gonial angle (HGA) and low gonial angle (LGA) groups. Various genetic models were analyzed, namely dominant (homozygous [AA] vs. heterozygous [AG] + polymorphic [GG]), recessive (AA + AG vs. GG), and additive (AA + GG vs. AG), using the chi-squared test. Results: The reliability of the gonial angle measurement was analyzed using a random sample (26%) of the tests, with the intra-examiner correlation showing an intra-class correlation coefficient of 0.99. The frequencies of the AA, AG, and GG genotypes of rs731236 polymorphism were 40.5%, 41.9%, and 17.6% in the HGA group and 21.8%, 51.0%, and 27.2% in the LGA group, respectively (P = 0.042). A statistically significant difference was observed in the allele frequencies between the two groups (P = 0.011). Moreover, a significant correlation was observed in the dominant genetic model. Conclusions: Taql polymorphism in the VDR gene plays a critical role in the vertical growth of the mandible and decreased gonial angle.
Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.5
/
pp.999-1008
/
2023
Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.