• Title/Summary/Keyword: Random phase image

Search Result 87, Processing Time 0.027 seconds

Asymmetric Multiple-Image Encryption Based on Octonion Fresnel Transform and Sine Logistic Modulation Map

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.341-357
    • /
    • 2016
  • A novel asymmetric multiple-image encryption method using an octonion Fresnel transform (OFST) and a two-dimensional Sine Logistic modulation map (2D-SLMM) is presented. First, a new multiple-image information processing tool termed the octonion Fresneltransform is proposed, and then an efficient method to calculate the OFST of an octonion matrix is developed. Subsequently this tool is applied to process multiple plaintext images, which are represented by octonion algebra, holistically in a vector manner. The complex amplitude, formed from the components of the OFST-transformed original images and modulated by a random phase mask (RPM), is used to derive the ciphertext image by employing an amplitude- and phase-truncation approach in the Fresnel domain. To avoid sending whole RPMs to the receiver side for decryption, a random phase mask generation method based on SLMM, in which only the initial parameters of the chaotic function are needed to generate the RPMs, is designed. To enhance security, the ciphertext and two decryption keys produced in the encryption procedure are permuted by the proposed SLMM-based scrambling method. Numerical simulations have been carried out to demonstrate the proposed scheme's validity, high security, and high resistance to various attacks.

Contextual Modeling and Generation of Texture Observed in Single and Multi-channel Images

  • Jung, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.335-344
    • /
    • 2001
  • Texture is extensively studied in a variety of image processing applications such as image segmentation and classification because it is an important property to perceive regions and surfaces. This paper focused on the analysis and synthesis of textured single and multiband images using Markov Random Field model considering the existent spatial correlation. Especially, for multiband images, the cross-channel correlation existing between bands as well as the spatial correlation within band should be considered in the model. Although a local interaction is assumed between the specified neighboring pixels in MRF models, during the maximization process, short-term correlations among neighboring pixels develop into long-term correlations. This result in exhibiting phase transition. In this research, the role of temperature to obtain the most probable state during the sampling procedure in discrete Markov Random Fields and the stopping rule were also studied.

Fully Phase-based Optical Encryption System Using Computer Holography and Fresnel Diffraction (컴퓨터 홀로그래피와 프레넬 회절을 이용한 위상 영상 광 암호화 시스템)

  • 윤경효;신창목;조규보;김수중;김철수;서동환
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.43-51
    • /
    • 2004
  • In this paper, we propose a high-level optical encryption system, which is tolerant with noises and cropping, by encrypting the phase-encoded CGH pattern of original image with the phase-encoded Fresnel diffraction pattern of random key images. For encryption, the phase-encoded CGH pattern of original image is multiplied by conjugate components which are the phase-encoded Fresnel diffraction patterns of random key images. The original information can be reconstructed by multiplying encrypted image by phase-encoded Fresnel diffraction pattern of random key images and performing Fourier transform of the multiplication result. The proposed system is robust to noises and cropping due to characteristics of CGH pattern and can guarantee high-level encryption by using Fresnel diffraction information. We verified the validity of proposed system by computer simulations, numerical analysis of noises and cropping effect and optical experiment.

Interferometric Image Encryption and Decryption using Binary Phase Hologram (이진 위상 홀로그램을 이용한 간섭성 영상 암호화 및 복원)

  • 김종윤;김정우
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.80-86
    • /
    • 2002
  • In this paper, we propose the new optical security technique using two phase holograms based on interferometer. The encoded random phase image does not have any information on the original image. Without Hewing the key mask, one cannot decode the encrypted image and regenerate the original image. And the use of two phase only images in the proposed security system leads to maximum optical efficiency (100% in theory). Also they cannot be detected by an intensity detector such as a CCD camera. Computer simulations and optical experiments show performance of the proposed methods.

  • PDF

Optical Encryption based on Visual Cryptography and Interferometry (시각 암호와 간섭계를 이용한 광 암호화)

  • 이상수;서동환;김종윤;박세준;신창목;김수중;박상국
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.126-127
    • /
    • 2000
  • In this paper, we proposed an optical encryption method based in the concept of visual cryptography and interferometry. In our method a secret binary image was divided into two sub-images and they were encrypted by 'XOR' operation with a random key mask. Finally each encrypted image was changed into phase mask. By interference of these two phase masks the original image was obtained. Compared with general visual encryption method, this optical method had good signal-to-noise ratio due to no need to generate sub-pixels like visual encryption.

  • PDF

Optical encryption system using phase-encoded virtual image (가상 위상 영상을 이용한 광학적 암호화 시스템)

  • 서동환;신창목;김수중;배장근;김철수;도양회
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.249-254
    • /
    • 2003
  • In this paper, we propose an improved image encryption and decryption method using a phase-encoded virtual image and interference. An original image is simply decrypted by interfering a reference wave with the wave passing through a decrypting key and the encrypted image, where every image has grey level. The proposed encryption is performed by the multiplication of an encrypting key and a phase-encoded virtual image which dose not contain any information for the original image. Therefore even if unauthorized people analyze the encrypted image, they cannot reconstruct the original image. Also grey image encryption can improve the encryption level compared to binary image encryption. Computer simulation and optical experiments confirmed that the proposed technique is a simple for optical encryption.

The analysis of optical image encryption using random phase mask (임의 위상판에 의한 광학상 암호화의 분석)

  • 김병철;차성도;신승호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.72-73
    • /
    • 2001
  • 대용량 정보의 보안이 매우 중요해짐에 따라 활발히 진행 중인 광정보의 보안에 대한 연구 중에서 광학적 위상암호화는 많은 양의 정보를 한린에 암호화하고 해독할 수 있다(·:). 특히 Javidi 등이 제안한 Fresnal 영역 임의 위상판(random phase mask; RPM)을 이용한 암호화 방법은 3차원 위치 정보를 암호화 키로 사용한다. 이와 같은 암호화 방법에 회전에 의한 위상변화를 추가하면 암호화 수준을 높일 수 있다. (중략)

  • PDF

Image Watermark Method Using Multiple Decoding Keys (다중 복호화 키들을 이용한 영상 워터마크 방법)

  • Lee, Hyung-Seok;Seo, Dong-Hoan;Cho, Kyu-Bo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.262-269
    • /
    • 2008
  • In this paper, we propose an image watermark method using multiple decoding keys. The advantages of this method are that the multiple original images are reconstructed by using multiple decoding keys in the same watermark image, and that the quality of reconstructed images is clearly enhanced based on the idea of Walsh code without any side lobe components in the decoding process. The zero-padded original images, multiplied with random-phase pattern to each other, are Fourier transformed. Encoded images are then obtained by taking the real-valued data from these Fourier transformed images. The embedding images are obtained by the product of independent Walsh codes, and these spreaded phase-encoded images which are multiplied with new random-phase images. Also we obtain the decoding keys by multiplying these random-phase images with the same Walsh code images used in the embedding images. A watermark image is then made from the linear superposition of the weighted embedding images and a cover image, which is multiplied with a new independent Walsh code. The original image is simply reconstructed by the inverse-Fourier transform of the despreaded image of the multiplication between the watermark image and the decoding key. Computer simulations demonstrate the efficiency of the proposed watermark method with multiple decoding keys and a good robustness to the external attacks such as cropping and compression.

Double Encryption of Digital Hologram Based on Phase-Shifting Digital Holography and Digital Watermarking (위상 천이 디지털 홀로그래피 및 디지털 워터마킹 기반 디지털 홀로그램의 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • In this Paper, Double Encryption Technology Based on Phase-Shifting Digital Holography and Digital Watermarking is Proposed. For the Purpose, we First Set a Logo Image to be used for Digital Watermark and Design a Binary Phase Computer Generated Hologram for this Logo Image using an Iterative Algorithm. And Random Generated Binary Phase Mask to be set as a Watermark and Key Image is Obtained through XOR Operation between Binary Phase CGH and Random Binary Phase Mask. Object Image is Phase Modulated to be a Constant Amplitude and Multiplied with Binary Phase Mask to Generate Object Wave. This Object Wave can be said to be a First Encrypted Image Having a Pattern Similar to the Noise Including the Watermark Information. Finally, we Interfere the First Encrypted Image with Reference Wave using 2-step PSDH and get a Good Visible Interference Pattern to be Called Second Encrypted Image. The Decryption Process is Proceeded with Fresnel Transform and Inverse Process of First Encryption Process After Appropriate Arithmetic Operation with Two Encrypted Images. The Proposed Encryption and Decryption Process is Confirmed through the Computer Simulations.

Shift and Noise Tolerance Encryption System Using a Joint Transform Correlator (결합 변환 상관기를 이용한 잡음 및 변이에 강한 암호화 시스템)

  • 서동환;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.499-506
    • /
    • 2003
  • In this paper, we propose the shift and noise tolerance method using a virtual phase image and a joint transform correlator (JTC) architecture that can alleviate the need for an accurate optical axis alignment. An encrypted image is obtained by the Fourier transform of the product of a phase- encoded virtual image to camouflage the original one and a random phase image. Therefore, even if unauthorized users analyze the encrypted image, we can prevent the possibility of counterfeiting from unauthorized people using virtual image which dose not contain any information from the original image. We demonstrate the robustness to noise, to data loss and to shift of the encrypted image using a JTC in the proposed description technique.