• 제목/요약/키워드: Random censorship model

검색결과 28건 처리시간 0.025초

중도절단모형이 지수분포의 척도모수추정에 미치는 영향 (The influence of the random censorship model on the estimation of the scale parameter of the exponential distribution)

  • 김남현
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.393-402
    • /
    • 2014
  • 수명시간 분석에서 자주 이용되는 분포 중 하나는 지수분포이다. 본 논문에서는 임의중도절단 자료의 분석에서 중도절단모형이 지수분포의 모수추정에 어떤 영향을 주는지에 대해서 알아보았다. 고려한 중도절단모형은 Koziol-Green 모형과 일반화 지수분포 모형으로 이들은 의미상 매우 다른 모형이다. 모의실험을 통해서 살펴본 결과 중도절단모형이 모수의 평균적인 추정값에는 크게 영향을 주지 않는다고 보이나 가정한 모형이 실제의 모형과 차이가 심하게 나는 경우 추정량의 MSE가 커지는 경향을 보였다.

A Comparative Study on Nonparametric Reliability Estimation for Koziol-Green Model with Random Censorship

  • Cha, Young-Joon;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.231-237
    • /
    • 1997
  • The Koziol-Green(KG) model has become an important topic in industrial life testing. In this paper we suggest MLE of the reliability function for the Weibull distribution under the KG model. Futhermore, we compare Kaplan-Meier estimator, Nelson estimator, Cheng & Chang estimator, and Ebrahimi estimator with proposed estimator for the reliability function under the KG model.

  • PDF

A Note on Asymptotic Relative Efficiency of the Nonparametric Reliability Estimation for the Proportional Hazards Model

  • Cha, Young-Joon;Lee, Jae-Man;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.173-177
    • /
    • 1998
  • This paper presents the asymptotic relative efficiency of the nonparametric estimator relative to the parametric maximum likelihood estimator of the reliability function under the proportional hazards model of random censorship. Also we examine the efficiency loss due to censoring proportions and misson times.

  • PDF

Estimation of Mean Residual Life under Random Censorship Model Using Partial Moment Approximation

  • Park, Byung Gu;Lee, Jae Man;Cha, Young Joon
    • 품질경영학회지
    • /
    • 제22권3호
    • /
    • pp.111-118
    • /
    • 1994
  • In this paper we propose a parametric and a nonparametric small sample estimators for the mean residual life (MRL) under the random censorship model using the partial moment approximation. We also compare the proposed nonparametric estimator with the well-known nonparametric MRL estimator based on Kaplan-Meier estimator of the survival function, and present the efficiency of the nonparametric method relative to the Weibull model for small samples.

  • PDF

임의중단된 이변량 지수모형의 독립성에 대한 붓스트랩 검정 (Boostrap testing for independence in Marshall and Olkin's model under random censorship)

  • 김달호;조길호;조장식
    • 응용통계연구
    • /
    • 제9권2호
    • /
    • pp.13-23
    • /
    • 1996
  • 본 논문에서는 임의중단된 자료가 관찰되는 경우 Marshall과 Olkin의 이변량 지수 모형의 독립성에 대한 붓스트랩 검정절차를 제안하고, 몬테칼로 모의실험을 통하여 제안된 붓스트랩 검정법과 기존의 다른 검정법들의 검정력을 비교하였다.

  • PDF

Weak Convergence for Nonparametric Bayes Estimators Based on Beta Processes in the Random Censorship Model

  • Hong, Jee-Chang
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.545-556
    • /
    • 2005
  • Hjort(1990) obtained the nonparametric Bayes estimator $\^{F}_{c,a}$ of $F_0$ with respect to beta processes in the random censorship model. Let $X_1,{\cdots},X_n$ be i.i.d. $F_0$ and let $C_1,{\cdot},\;C_n$ be i.i.d. G. Assume that $F_0$ and G are continuous. This paper shows that {$\^{F}_{c,a}$(u){\|}0 < u < T} converges weakly to a Gaussian process whenever T < $\infty$ and $\~{F}_0({\tau})\;<\;1$.

Large Sample Tests for Independence and Symmetry in the Bivariate Weibull Model under Random Censorship

  • Cho, Jang-Sik;Ko, Jeong-Hwan;Kang, Sang-Kil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.405-412
    • /
    • 2003
  • In this paper, we consider two components system which the lifetimes have a bivariate weibull distribution with random censored data. Here the censoring time is independent of the lifetimes of the components. We construct large sample tests for independence and symmetry between two-components based on maximum likelihood estimators and the natural estimators. Also we present a numerical study.

  • PDF

THE EMPIRICAL LIL FOR THE KAPLAN-MEIER INTEGRAL PROCESS

  • Bae, Jong-Sig;Kim, Sung-Yeun
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.269-279
    • /
    • 2003
  • We prove an empirical LIL for the Kaplan-Meier integral process constructed from the random censorship model under bracketing entropy and mild assumptions due to censoring effects. The main method in deriving the empirical LIL is to use a weak convergence result of the sequential Kaplan-Meier integral process whose proofs appear in Bae and Kim [2]. Using the result of weak convergence, we translate the problem of the Kaplan Meier integral process into that of a Gaussian process. Finally we derive the result using an empirical LIL for the Gaussian process of Pisier [6] via a method adapted from Ossiander [5]. The result of this paper extends the empirical LIL for IID random variables to that of a random censorship model.

An Empirical Central Limit Theorem for the Kaplan-Meier Integral Process on [0,$\infty$)

  • Bae, Jong-Sig
    • Journal of the Korean Statistical Society
    • /
    • 제26권2호
    • /
    • pp.231-243
    • /
    • 1997
  • In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

  • PDF