• Title/Summary/Keyword: Random Numbers

Search Result 445, Processing Time 0.028 seconds

STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.703-711
    • /
    • 2008
  • Let ${{\xi}_k,k{\in}{\mathbb{Z}}}$ be an associated H-valued random variables with $E{\xi}_k$ = 0, $E{\parallel}{\xi}_k{\parallel}$ < ${\infty}$ and $E{\parallel}{\xi}_k{\parallel}^2$ < ${\infty}$ and {$a_k,k{\in}{\mathbb{Z}}$} a sequence of bounded linear operators such that ${\sum}^{\infty}_{j=0}j{\parallel}a_j{\parallel}_{L(H)}$ < ${\infty}$. We define the sationary Hilbert space process $X_k={\sum}^{\infty}_{j=0}a_j{\xi}_{k-j}$ and prove that $n^{-1}{\sum}^n_{k=1}X_k$ converges to zero.

ON THE STRONG LAWS OF LARGE NUMBERS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES

  • Baek, J.I.;Choi, J.Y.;Ryu, D.H.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.457-466
    • /
    • 2004
  • Let{$X_{ni}$\mid$\;1\;{\leq}\;i\;{\leq}\;k_n,\;n\;{\geq}\;1$} be an array of rowwise negatively associated random variables such that $P$\mid$X_{ni}$\mid$\;>\;x)\;=\;O(1)P($\mid$X$\mid$\;>\;x)$ for all $x\;{\geq}\;0,\;and\; \{k_n\}\;and\;\{r_n\}$ be two sequences such that $r_n\;{\geq}\;b_1n^r,\;k_n\;{\leq}\;b_2n^k$ for some $b_1,\;b_2,\;r,\;k\;>\;0$. Then it is shown that $\frac{1}{r_n}\;max_1$\mid${\Sigma_{i=1}}^j\;X_{ni}$\mid$\;{\rightarrow}\;0$ completely convergence and the strong convergence for weighted sums of N A arrays is also considered.

A Study on Uncertainty Analyses of Monte Carlo Techniques Using Sets of Double Uniform Random Numbers

  • Lee, Dong Kyu;Sin, Soo Mi
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 2006
  • Structural uncertainties are generally modeled using probabilistic approaches in order to quantify uncertainties in behaviors of structures. This uncertainty results from the uncertainties of structural parameters. Monte Carlo methods have been usually carried out for analyses of uncertainty problems where no analytical expression is available for the forward relationship between data and model parameters. In such cases any direct mathematical treatment is impossible, however the forward relation materializes itself as an algorithm allowing data to be calculated for any given model. This study addresses a new method which is utilized as a basis for the uncertainty estimates of structural responses. It applies double uniform random numbers (i.e. DURN technique) to conventional Monte Carlo algorithm. In DURN method, the scenarios of uncertainties are sequentially selected and executed in its simulation. Numerical examples demonstrate the beneficial effect that the technique can increase uncertainty degree of structural properties with maintaining structural stability and safety up to the limit point of a breakdown of structural systems.

Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

  • Aydogdu, Ibrahim;Carbas, Serdar;Akin, Alper
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.93-112
    • /
    • 2017
  • Metaheuristic algorithms in general make use of uniform random numbers in their search for optimum designs. Levy Flight (LF) is a random walk consisting of a series of consecutive random steps. The use of LF instead of uniform random numbers improves the performance of metaheuristic algorithms. In this study, three discrete optimum design algorithms are developed for steel skeletal structures each of which is based on one of the recent metaheuristic algorithms. These are biogeography-based optimization (BBO), brain storm optimization (BSO), and artificial bee colony optimization (ABC) algorithms. The optimum design problem of steel skeletal structures is formulated considering LRFD-AISC code provisions and W-sections for frames members and pipe sections for truss members are selected from available section lists. The minimum weight of steel structures is taken as the objective function. The number of steel skeletal structures is designed by using the algorithms developed and effect of LF is investigated. It is noticed that use of LF results in up to 14% lighter optimum structures.

Applications of ergodic theory to pseudorandom numbers

  • Choe, Geon-Ho;Kim, Chihurn -Choe;Kim, Dong-Han -Choe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.173-187
    • /
    • 1998
  • Several aspects of pseudorandom number generators are investigated from the viewpoint of ergodic theory. An algorithm of generating pseudorandom numbers proposed and shown to behave reasonably well.

  • PDF

THE GENERALIZED RATIO-OF-UNIFORM METHOD

  • Chung, Youn-Shik;Lee, Sang-Jeen
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.469-476
    • /
    • 1997
  • In this paper we present a random number generation method which is one of the rejection methods, To accelerate ratio-of-uniform method we use an efficiency variable γ. After finding the optimal value of γwith respect to interesting distribution with pro-portional density random numbers can be generated in acceleration.

LIMIT THEOREMS FOR MARKOV PROCESSES GENERATED BY ITERATIONS OF RANDOM MAPS

  • Lee, Oe-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.983-992
    • /
    • 1996
  • Let p(x, dy) be a transition probability function on $(S, \rho)$, where S is a complete separable metric space. Then a Markov process $X_n$ which has p(x, dy) as its transition probability may be generated by random iterations of the form $X_{n+1} = f(X_n, \varepsilon_{n+1})$, where $\varepsilon_n$ is a sequence of independent and identically distributed random variables (See, e.g., Kifer(1986), Bhattacharya and Waymire(1990)).

  • PDF