• Title/Summary/Keyword: Random Forest Prediction Model

Search Result 300, Processing Time 0.023 seconds

Developing a Pedestrian Satisfaction Prediction Model Based on Machine Learning Algorithms (기계학습 알고리즘을 이용한 보행만족도 예측모형 개발)

  • Lee, Jae Seung;Lee, Hyunhee
    • Journal of Korea Planning Association
    • /
    • v.54 no.3
    • /
    • pp.106-118
    • /
    • 2019
  • In order to develop pedestrian navigation service that provides optimal pedestrian routes based on pedestrian satisfaction levels, it is required to develop a prediction model that can estimate a pedestrian's satisfaction level given a certain condition. Thus, the aim of the present study is to develop a pedestrian satisfaction prediction model based on three machine learning algorithms: Logistic Regression, Random Forest, and Artificial Neural Network models. The 2009, 2012, 2013, 2014, and 2015 Pedestrian Satisfaction Survey Data in Seoul, Korea are used to train and test the machine learning models. As a result, the Random Forest model shows the best prediction performance among the three (Accuracy: 0.798, Recall: 0.906, Precision: 0.842, F1 Score: 0.873, AUC: 0.795). The performance of Artificial Neural Network is the second (Accuracy: 0.773, Recall: 0.917, Precision: 0.811, F1 Score: 0.868, AUC: 0.738) and Logistic Regression model's performance follows the second (Accuracy: 0.764, Recall: 1.000, Precision: 0.764, F1 Score: 0.868, AUC: 0.575). The precision score of the Random Forest model implies that approximately 84.2% of pedestrians may be satisfied if they walk the areas, suggested by the Random Forest model.

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

Rice yield prediction in South Korea by using random forest (Random Forest를 이용한 남한지역 쌀 수량 예측 연구)

  • Kim, Junhwan;Lee, Juseok;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • In this study, the random forest approach was used to predict the national mean rice yield of South Korea by using mean climatic factors at a national scale. A random forest model that used monthly climate variable and year as an important predictor in predicting crop yield. Annual yield change would be affected by technical improvement for crop management as well as climate. Year as prediction factor represent technical improvement. Thus, it is likely that the variables of importance identified for the random forest model could result in a large error in prediction of rice yield in practice. It was also found that elimination of the trend of yield data resulted in reasonable accuracy in prediction of yield using the random forest model. For example, yield prediction using the training set (data obtained from 1991 to 2005) had a relatively high degree of agreement statistics. Although the degree of agreement statistics for yield prediction for the test set (2006-2015) was not as good as those for the training set, the value of relative root mean square error (RRMSE) was less than 5%. In the variable importance plot, significant difference was noted in the importance of climate factors between the training and test sets. This difference could be attributed to the shifting of the transplanting date, which might have affected the growing season. This suggested that acceptable yield prediction could be achieved using random forest, when the data set included consistent planting or transplanting dates in the predicted area.

Basic Study on Safety Accident Prediction Model Using Random Forest in Construction Field (랜덤 포레스트 기법을 이용한 건설현장 안전재해 예측 모형 기초 연구)

  • Kang, Kyung-Su;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.59-60
    • /
    • 2018
  • The purpose of this study is to predict and classify the accident types based on the KOSHA (Korea Occupational Safety & Health Agency) and weather data. We also have an effort to suggest an important management method according to accident types by deriving feature importance. We designed two models based on accident data and weather data (model(a)) and only weather data (model(b)). As a result of random forest method, the model(b) showed a lack of accuracy in prediction. However, the model(a) presented more accurate prediction results than the model(b). Thus we presented safety management plan based on the results. In the future, this study will continue to carry out real time prediction to occurrence types to prevent safety accidents by supplementing the real time accident data and weather data.

  • PDF

A Mixed-effects Height-Diameter Model for Pinus densiflora Trees in Gangwon Province, Korea

  • Lee, Young Jin;Coble, Dean W.;Pyo, Jung Kee;Kim, Sung Ho;Lee, Woo Kyun;Choi, Jung Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.178-182
    • /
    • 2009
  • A new mixed-effects model was developed that predicts individual-tree total height for Pinus densiflora trees in Gangwon province as a function of individual-tree diameter (cm). The mixed-effects model contains two random-effects parameters. Maximum likelihood estimation was used to fit the model to 560 height-diameter observations of individual trees measured throughout Gwangwon province in 2007 as part of the National Forest Inventory Program in Korea. The new model is an improvement over fixed-effects models because it can be calibrated to a local area, such as an inventory plot or individual stand. The new model also appears to be an improvement over the Forest Resources Evaluation and Prediction Program for the ten calibration trees used in this study. An example is provided that describes how to estimate the random-effects parameters using ten calibration trees.

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang (지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.649-655
    • /
    • 2021
  • This study purposes to cross-validate its performance by applying the optimal seismic vulnerability assessment model based on previous studies conducted in Gyeongju to other regions. The test area was Pohang City, the occurrence site for the 2017 Pohang Earthquake, and the dataset was built the same influencing factors and earthquake-damaged buildings as in the previous studies. The validation dataset was built via random sampling, and the prediction accuracy was derived by applying it to a model based on a random forest (RF) of Gyeongju. The accuracy of the model success and prediction in Gyeongju was 100% and 94.9%, respectively, and as a result of confirming the prediction accuracy by applying the Pohang validation dataset, it appeared as 70.4%.

A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju (제주 실시간 일사량의 기계학습 예측 기법 연구)

  • Lee, Young-Mi;Bae, Joo-Hyun;Park, Jeong-keun
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.