• Title/Summary/Keyword: Random Encounter Model

Search Result 15, Processing Time 0.009 seconds

Estimating Population Density of Leopard Cat (Prionailurus bengalensis) from Camera Traps in Maekdo Riparian Park, South Korea

  • Park, Heebok;Lim, Anya;Choi, Tae-Young;Lim, Sang-Jin;Park, Yung-Chul
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.3
    • /
    • pp.239-242
    • /
    • 2017
  • Although camera traps have been widely used to understand the abundance of wildlife in recent decades, the effort has been restricted to small sub-set of wildlife which can mark-and-recapture. The Random Encounter Model shows an alternative approach to estimate the absolute abundance from camera trap detection rate for any animals without the need for individual recognition. Our study aims to examine the feasibility and validity of the Random Encounter Model for the density estimation of endangered leopard cats (Prionailurus bengalensis) in Maekdo riparian park, Busan, South Korea. According to the model, the estimated leopard cat density was $1.76km^{-2}$ (CI 95%, 0.74-3.49), which indicated 2.46 leopard cats in $1.4km^2$ of our study area. This estimate was not statistically different from the previous leopard cat population count ($2.33{\pm}0.58$) in the same area. As follows, our research demonstrated the application and usefulness of the Random Encounter Model in density estimation of unmarked wildlife which helps to manage and protect the target species with a better understanding of their status.

A Note on Common Mistakes about Stopped Random Sums Arising in Queueing Models (대기행렬 모형에서 틀리기 쉬운 정지랜덤합에 관한 소고)

  • Chae, Kyung-C.;Park, Hyun-M.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.381-386
    • /
    • 1998
  • We frequently encounter stopped random sums when modelling queueing systems. We also notice occasional mishandling of stopped random sums in the literature. The purpose of this note is to prevent further mistakes by identifying and correcting typical mistakes about stopped random sums. As an example model, we use the two-phase M/G/1 queue with multiple vacations.

  • PDF

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior (랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용)

  • Kim, Yeon Kyoung;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.287-301
    • /
    • 2018
  • It is common to encounter count data with excess zeros in various research fields such as the social sciences, natural sciences, medical science or engineering. Such count data have been explained mainly by zero-inflated Poisson model and extended models. Zero-inflated count data are also often correlated or clustered, in which random effects should be taken into account in the model. Frequentist approaches have been commonly used to fit such data. However, a Bayesian approach has advantages of prior information, avoidance of asymptotic approximations and practical estimation of the functions of parameters. We consider a Bayesian zero-inflated Poisson regression model with random effects for correlated zero-inflated count data. We conducted simulation studies to check the performance of the proposed model. We also applied the proposed model to smoking behavior data from the Regional Health Survey (2015) of the Korea Centers for disease control and prevention.

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

Analysis of Break in Presence During Game Play Using a Linear Mixed Model

  • Chung, Jae-Yong;Yoon, Hwan-Jin;Gardne, Henry J.
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.687-694
    • /
    • 2010
  • Breaks in presence (BIP) are those moments during virtual environment (VE) exposure in which participants become aware of their real world setting and their sense of presence in the VE becomes disrupted. In this study, we investigate participants' experience when they encounter technical anomalies during game play. We induced four technical anomalies and compared the BIP responses of a navigation mode game to that of a combat mode game. In our analysis, we applied a linear mixed model (LMM) and compared the results with those of a conventional regression model. Results indicate that participants felt varied levels of impact and recovery when experiencing the various technical anomalies. The impact of BIPs was clearly affected by the game mode, whereas recovery appears to be independent of game mode. The results obtained using the LMM did not differ significantly from those obtained using the general regression model; however, it was shown that treatment effects could be improved by consideration of random effects in the regression model.

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Cumulative Sums of Residuals in GLMM and Its Implementation

  • Choi, DoYeon;Jeong, KwangMo
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.423-433
    • /
    • 2014
  • Test statistics using cumulative sums of residuals have been widely used in various regression models including generalized linear models(GLM). Recently, Pan and Lin (2005) extended this testing procedure to the generalized linear mixed models(GLMM) having random effects, in which we encounter difficulties in computing the marginal likelihood that is expressed as an integral of random effects distribution. The Gaussian quadrature algorithm is commonly used to approximate the marginal likelihood. Many commercial statistical packages provide an option to apply this type of goodness-of-fit test in GLMs but available programs are very rare for GLMMs. We suggest a computational algorithm to implement the testing procedure in GLMMs by a freely accessible R package, and also illustrate through practical examples.

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.