• Title/Summary/Keyword: Ramp rate

Search Result 129, Processing Time 0.027 seconds

An efficient dynamic load dispatch algorithm with Lagrange multipliers adjustment (라그랑지승수 수정에 의한 효율적인 동적부하배분 알고리즘)

  • 송길영;오광희;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.467-473
    • /
    • 1996
  • This Paper presents a new algorithm to solve Dynamic Economic Dispatch problem. Proposed algorithm is composed of two computational modules; one is dispatch, the other adjusting module. In the dispatch module based on the traditional Static Economic Dispatch method, the power dispatch of each unit is calculated. And in case the results of dispatch module violate ramp rate constraints, Lagrange multipliers are adjusted in the adjusting module. Tests and computer results on test systems are given to show the efficiency of the proposed algorithm. (author). 11 refs., 6 figs., 4 tabs.

  • PDF

Quench Characteristics of SSC Dipole Magnet Prototypes (SSC 쌍극자 마그네트의 퀜치 특성에 대한 연구)

  • Nah, Wan-Soo;Ryu, Kang-Sig;Kwon, Young-Kil;Cho, Jeon-Wook;Jin, Hong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1078-1080
    • /
    • 1993
  • The quench performance and ramp rate sensitivity of eighteen 5-cm-aperature, 15-m-long SSC dipole magnet prototypes are discussed. All the magnets appear to reach a quench plateau near their extrapolated short sample current limit and well in excess of the operating current with very little training. Most of the magnets, however, exibit a dramatic degradation of thier quench current as a function of ramp rate, which for the most part, can be attributed to large cable eddy currents.

  • PDF

Forecasting wind power generation using ANFIS and Power Ramp Rate (ANFIS기법과 Power Ramp Rate 속성을 이용한 풍력발전량 예측)

  • Park, Hyun-Woo;Jin, Cheng-Hao;Kim, Kwang-Deuk;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1085-1087
    • /
    • 2012
  • 현재 급격한 화석 에너지의 사용 증가로 인해 자원이 고갈되고 있으며, 심각한 환경오염의 문제가 발생하고 있다. 이러한 화석 에너지의 문제점 때문에 무공해이면서 자원 량이 무한에 가까운 신재생 에너지가 거론되고 있는데, 그 중에서 경제적인 면과 기술력이 가장 발전한 풍력 에너지가 각광 받고 있다. 하지만 풍력 발전은 풍속이 짧은 시간 안에 급격한 변화를 일으켜 풍력 터빈의 손상을 초래하며 정확한 풍력발전량의 예측이 힘들어 전력 생산량이 불규칙하다. 그리하여 전력의 공급과 수요의 균형을 위해 풍력발전량의 정확한 예측이 필요하다. 따라서 이 연구에서는 ANFIS을 적용하고 전력 생산 변화의 빠르기 PRR을 이용하여 풍력발전량을 예측하였다. 실험에서는 ANFIS기법에 PRR속성을 이용하여 단순한 ANFIS 기법 보다 더 정확한 풍력 발전량의 예측 결과를 얻을 수 있었다.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients for Economic Load Dispatch with Generator Constraints

  • Abdullah, M.N.;Bakar, A.H.A;Rahim, N.A.;Mokhlis, H.;Illias, H.A.;Jamian, J.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-26
    • /
    • 2014
  • This paper proposes a Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients (MPSO-TVAC) for solving economic load dispatch (ELD) problem. Due to prohibited operating zones (POZ) and ramp rate limits of the practical generators, the ELD problems become nonlinear and nonconvex optimization problem. Furthermore, the ELD problem may be more complicated if transmission losses are considered. Particle swarm optimization (PSO) is one of the famous heuristic methods for solving nonconvex problems. However, this method may suffer to trap at local minima especially for multimodal problem. To improve the solution quality and robustness of PSO algorithm, a new best neighbour particle called 'rbest' is proposed. The rbest provides extra information for each particle that is randomly selected from other best particles in order to diversify the movement of particle and avoid premature convergence. The effectiveness of MPSO-TVAC algorithm is tested on different power systems with POZ, ramp-rate limits and transmission loss constraints. To validate the performances of the proposed algorithm, comparative studies have been carried out in terms of convergence characteristic, solution quality, computation time and robustness. Simulation results found that the proposed MPSO-TVAC algorithm has good solution quality and more robust than other methods reported in previous work.

A Study of the Effect using Ramp Waveform on the Address Period of Address Display Separated Operating in ac Plasma Display Panel (AC-PDP의 ADS 구동방식에서 어드레스 구간에 기울기파를 사용한 효과에 관한 연구)

  • Joung, Bong-Kyu;Kim, Ji-Sun;Kwon, Shi-Ok;Hwang, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.180-186
    • /
    • 2005
  • As a driving method of AC-PDP, Address-Display Separated(ADS) driving has been widely adopted for its simple architecture and low discharge failure rate. However, a high definition like a HDTV has defect of long addressing time by reason of a number of pixels. Priming effect isn't fully sustained because of long addressing time during the address period. Therefore, it has different wall charge and luminance of each addressing time in the sustain period. In this study, we suggest a new driving waveform on the address period to improve these defects. We applied a ramp waveform, instead of a square waveform, to an address period in ADS, for operating on the AC-PDP, which used the conventional gas [He-Ne-Xe]. When the ramp waveform is applied to the address period, we experimented for uniform wall charge and the improved luminance by sustained Priming effect at each addressing time in the sustain period.

Investigation of Oswatitsch Scheme for Maximum Total Pressure Recovery of Hypersonic Wedge-type Intakes (극초음속 쐐기형 흡입구의 최대 전압력 회복률을 위한 오스와치 기법 분석)

  • Heo, Yub;Moon, Kyoo-Hwan;Sun, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1031-1038
    • /
    • 2017
  • In order to improve the performance of the air breathing engines, it is important to maximize the total pressure recovery through air intake. In this study, we investigated whether the Oswatitsch method, which guarantees the maximum pressure recovery for supersonic intake, is effective at hypersonic speed by compressing the intake air with the same intensity at each ramp. The non-linearity of the shock wave normal Mach number at each ramp stage was analyzed by comparing the compression ramp angle and the number of ramp to the inflow Mach number in terms of compressible thermodynamics and the operation limits of the inlet. Based on this analysis, the Oswaitisch technique yields valid conditions not only in supersonic but also hypersonic flight regime.

The Effects of Inclined Foil Shape on Flow Characteristics in Air Foil Thrust Bearing Using CFD (에어 포일 스러스트 베어링의 탑포일 경사면 형상이 유동특성에 미치는 영향에 대한 수치해석 연구)

  • Baek, GeonWoong;Joo, Won-Gu;Mun, Hyeong Wook;Hwang, Sunghyen;Jeong, Sung-Yun;Park, Jung-Koo
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.117-124
    • /
    • 2021
  • In this study, we perform a 3D CFD conjugate analysis according to the shape of the foil ramp of the air foil thrust bearing, analyze the flow characteristics inside the bearing, and compare the results corresponding to the two shapes. Air has a lower viscosity than lubricating oil. Therefore, the thrust runner of the bearing must rotate at high speed to support the load. The gap between thrust runner and foil is significantly smaller than that of the oil bearing. Hence, it is crucial to analyze the complex flow characteristics inside the bearing to predict the complex flow inside the bearing and performance of the bearing. In addition, flow characteristics may appear differently depending on the ramp shape of the bearing foil, which may affect bearing performance. In this study, we numerically analyze the main flow path of air flowing into the bearing and the secondary flow path used for cooling the bearing using the commercial CFD software ANSYS CFX and compare the flow characteristics for straight and curved foil ramp shapes. Notably, there is a difference in the speed of the flowing air according to the shape of the ramp, which affects the bearing performance.

Analysis of PI air-fuel ratio feedback control system (비례적분 방식의 피드백 공연비 콘트롤 시스템 해석)

  • 이대영;박경석;노승탁;김응서;고상근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.73-80
    • /
    • 1991
  • Air/fuel ratio control system for gasoline engines has been analyzed to determine the control gain of the system. In this analysis the engine is modelled to be a simple time delaying element and the ramp-and-jump method is used to control air/fuel ratio. The result shows that it is necessary to measure the air flow rate accurately to enhance the control performance. And also it is shown that the control gain must be determined in some bounded region to meet the fast dynamic response and high catalyst conversion efficiency together.

  • PDF