• Title/Summary/Keyword: Ramp Rate Control

Search Result 25, Processing Time 0.058 seconds

Assessment of performance for Output Power Control of Wind Turbine using Energy Storage System (에너지저장장치를 이용한 풍력발전 출력 제어 성능 평가)

  • Hong, Jong-Seok;Choi, Chang-Ho;Lee, Joo-Yeon;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.254-259
    • /
    • 2014
  • In this paper, we describe construction of a wind stabilization demo-site and effects of output power control of wind turbines for suppression of ramp rate using ESS (Energy Storage System). It is difficult to control the output power of distributed generator such as wind turbine which of variation is very large. If the large capacity wind farm be interconnected into power system may cause blackout due to Power Quality. For these reasons, the international standards such as Grid-Code is limited to less than 10 [%/min] of renewable energy ramp rate. The case of Korea, government actively conducts propagating large-scale renewable energy for green growth policy, to interconnecting more renewable energy into power system is necessary for stabilization technology. For these reasons, the POSCO consortium has constructed a wind stabilization demo-site that is configured as 500 [kWh] battery energy storage systems can output up to 3 [C-Rate] and two wind turbines rated 750 [kW]. In POSCO consortium, which implements various methods stabilizing output power of wind turbine such as smoothing, section firming and ramp control, we derive the results of long-term demonstration that can be controlled to satisfy to the international standard about ramp rate [%/kW] of wind turbine output power.

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

A Study on the Coordinated Traffic Responsive Ramp Metering Control considering Spatial Equity (공간적 형평성을 고려한 통합 감응 램프미터링 제어 연구 -고속도로 진입로 중심으로-)

  • Yoon, Jae Yong;Shin, Hyoung O;Lee, Eui Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.361-367
    • /
    • 2019
  • Ramp metering is a traffic management technique that reduces the congestion of Expressway by controlling vehicles entering the highway. It is widely used outside the country, and Korea is also operating in seven sites (Seoul Ring Expressway). Ramp metering has the advantage of reducing congestion of Expressway, but there are disadvantages, as queuing occurs because vehicles are waiting for ramp, and the ramp queue affects adjacent roads at rush hour. To solve this problem, we improved the ramp metering algorithm to reduce the metering rate more spaces on ramp and to increase the metering rate less spaces. In order to evaluate this, the combined evaluation index was used and it was found that the result satisfied the equity and efficiency at the same time.

Bilevel-programming based failure-censored ramp-stress ALTSP for the log-logistic distribution with warranty cost

  • Srivastava, P.W.;Sharma, D.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.85-105
    • /
    • 2016
  • In this paper accelerated life testing is incorporated in quality control technique of acceptance sampling plan to induce early failures in high reliability products.Stress under accelerated condition can be applied in constant-stress, step-stress and progressive-stress or combination of such loadings. A ramp-stress results when stress is increased linearly (from zero) with time. In this paper optimum failure-censored ramp-stress accelerated life test sampling plan for log-logistic distribution has been formulated with cost considerations. The log-logistic distribution has been found appropriate for insulating materials. The optimal plans consist in finding optimum sample size, sample proportion allocated to each stress, and stress rate factor such that producer's and consumer's interests are safeguarded. Variance optimality criterion is used when expected cost per lot is not taken into consideration, and bilevel programming approach is used in cost optimization problems. The methods developed have been illustrated using some numerical examples, and sensitivity analyses carried out in the context of ramp-stress ALTSP based on variable SSP for proportion nonconforming.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

The Effect of Single-Entry Metering and Platoon Metering on Mainstream under the Same Metering Rate with Pre-timed Metering (정주기식 동일 미터링율 제어에서 차량진입방식에 따른 효과분석)

  • Kim, Sang-Gu;Ryu, Ju-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.29-37
    • /
    • 2010
  • Ramp metering control is the most representative strategy of uninterrupted flow control and management system. Ramp metering is to adjust vehicles entering an expressway in such a way that expressway mainline maintains flow stability by regulating ramp vehicles. The effect of two metering strategies, single-entry metering and platoon metering, on mainstream under the same metering rate with pre-timed metering are analyzed by micro-simulation. Platoon metering shows lower performance than single-entry metering under the same metering rate in terms of speed, density, and delay, causes earlier breakdown than single-entry metering. It indicates that the selection of metering type has critical importance as the flow of mainline is high.

Improvement of ALINEA Model Using Speed (속도를 이용한 ALINEA 모델 보완에 관한 연구)

  • Cho, Han-Seon;Lee, Jun;Lee, Ho-Won;Kim, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.73-80
    • /
    • 2008
  • ALINEA algorithm, which is one of the best on-ramp metering algorithms, was designed to control the traffic volume from on-ramp in order to maintain the optimal occupancy rate of the detectors installed downstream of the merge area. But, the reliability of occupancy rate estimated from the loop detectors, which are used most commonly in Korea, is relatively lower than other parameters such as speed and volume. Moreover, because occupancy rate depends on the length of loop detectors and site, lots of calibration work is required whenever they are installed in order to estimate the occupancy rate. Therefore, there exists room for improvement of ALINEA algorithm because only occupancy rate having some problems is considered as a control parameter in ALINEA algorithm. Practically it is difficult to measure or perceive the occupancy rate for traffic engineers and drivers. On the other hand, speed can be good alternative which can overcome the defect induced by using occupancy. In this study, occupancy based ALINEA algorithm is converted to speed based ALINEA assuming the linear relationship between density and speed.

Analysis of PI air-fuel ratio feedback control system (비례적분 방식의 피드백 공연비 콘트롤 시스템 해석)

  • 이대영;박경석;노승탁;김응서;고상근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.73-80
    • /
    • 1991
  • Air/fuel ratio control system for gasoline engines has been analyzed to determine the control gain of the system. In this analysis the engine is modelled to be a simple time delaying element and the ramp-and-jump method is used to control air/fuel ratio. The result shows that it is necessary to measure the air flow rate accurately to enhance the control performance. And also it is shown that the control gain must be determined in some bounded region to meet the fast dynamic response and high catalyst conversion efficiency together.

  • PDF

Lessons Learned from Energy Storage System Demonstrations for Primary Frequency Control

  • Yu, Kwang-myung;Choi, In-kyu;Woo, Joo-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.107-114
    • /
    • 2018
  • In recent years, ESS (Energy Storage System) has been widely used in various parts of a power system. Especially, due to its fast response time and high ramp rate, ESS is known to play an important role in regulating grid frequency and providing rotational inertia. As the number of installed and commercially operating ESSs increases, the reliability becomes an important issue. This paper introduces control schemes and presents its test method for grid-connected ESS for primary frequency regulation. The test method allows to verify the control operation in the individual operation mode and state. A validation of the method through actual ESS test in a electrical substation is presented in the case study section.