• Title/Summary/Keyword: Ramanujan theta function

Search Result 15, Processing Time 0.02 seconds

EVALUATIONS OF THE ROGERS-RAMANUJAN CONTINUED FRACTION BY THETA-FUNCTION IDENTITIES REVISITED

  • Yi, Jinhee;Paek, Dae Hyun
    • The Pure and Applied Mathematics
    • /
    • v.29 no.3
    • /
    • pp.245-254
    • /
    • 2022
  • In this paper, we use some theta-function identities involving certain parameters to show how to evaluate Rogers-Ramanujan continued fraction R($e^{-2{\pi}\sqrt{n}}$) and S($e^{-{\pi}\sqrt{n}}$) for $n=\frac{1}{5.4^m}$ and $\frac{1}{4^m}$, where m is any positive integer. We give some explicit evaluations of them.

NOTE ON MODULAR RELATIONS FOR THE ROGER-RAMANUJAN TYPE IDENTITIES AND REPRESENTATIONS FOR JACOBIAN IDENTITY

  • CHAUDHARY, M.P.;CHOI, JUNESANG
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.659-665
    • /
    • 2015
  • Combining and specializing some known results, we establish six identities which depict six modular relations for the Roger-Ramanujan type identities and two equivalent representations for Jacobian identity expressed in terms of combinatorial partition identities and Ramanujan-Selberg continued fraction. Two q-product identities are also considered.

PROOFS OF CONJECTURES OF SANDON AND ZANELLO ON COLORED PARTITION IDENTITIES

  • Berndt, Bruce C.;Zhou, Roberta R.
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.987-1028
    • /
    • 2014
  • In a recent systematic study, C. Sandon and F. Zanello offered 30 conjectured identities for partitions. As a consequence of their study of partition identities arising from Ramanujan's formulas for multipliers in the theory of modular equations, the present authors in an earlier paper proved three of these conjectures. In this paper, we provide proofs for the remaining 27 conjectures of Sandon and Zanello. Most of our proofs depend upon known modular equations and formulas of Ramanujan for theta functions, while for the remainder of our proofs it was necessary to derive new modular equations and to employ the process of duplication to extend Ramanujan's catalogue of theta function formulas.

General Formulas for Explicit Evaluations of Ramanujan's Cubic Continued Fraction

  • Naika, Megadahalli Sidda Naika Mahadeva;Maheshkumar, Mugur Chinna Swamy;Bairy, Kurady Sushan
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.435-450
    • /
    • 2009
  • On page 366 of his lost notebook [15], Ramanujan recorded a cubic continued fraction and several theorems analogous to Rogers-Ramanujan's continued fractions. In this paper, we derive several general formulas for explicit evaluations of Ramanujan's cubic continued fraction, several reciprocity theorems, two formulas connecting V (q) and V ($q^3$) and also establish some explicit evaluations using the values of remarkable product of theta-function.

FOUNDATIONS OF THE COLORED JONES POLYNOMIAL OF SINGULAR KNOTS

  • Elhamdadi, Mohamed;Hajij, Mustafa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.937-956
    • /
    • 2018
  • This article gives the foundations of the colored Jones polynomial for singular knots. We extend Masbum and Vogel's algorithm [26] to compute the colored Jones polynomial for any singular knot. We also introduce the tail of the colored Jones polynomial of singular knots and use its stability properties to prove a false theta function identity that goes back to Ramanujan.

PARTIAL SECOND ORDER MOCK THETA FUNCTIONS, THEIR EXPANSIONS AND PADE APPROXIMANTS

  • Srivastava, Bhaskar
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.767-777
    • /
    • 2007
  • By proving a summation formula, we enumerate the expansions for the mock theta functions of order 2 in terms of partial mock theta functions of order 2, 3 and 6. We show a relation between Ramanujan's ${\mu}(q)$-function and his sixth order mock theta functions. In addition, we also give the continued fraction representation for ${\mu}(q)$ and 2nd order mock theta functions and $Pad\acute{e}$ approximants.