• Title/Summary/Keyword: Raman process

Search Result 344, Processing Time 0.031 seconds

The Physicochemical and Optical Characteristics of FeaSibCcHd Films (FeaSibCcHd 박막의 물리·화학 및 광학적 특성)

  • Kim, Kyung-soo;Jean, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • When the preparation method of iron silicide films possess the annealing process, the interfacial state of the films is not fine. The good quality films were obtained as the plasma was used without annealing processing. Since the injected precursors were various active species in the plasma state, the organic compound was contained in the prepared films. We confirmed the formation of Fe-Si bonds as well as the organic compound by Fe and Si vibration mode in Raman scattering spectrum at $250cm^{-1}$ and Ft-IR. Because of epitaxy growth being progressed by the high energy of plasma at the low temperature of substrate, iron silicide was epitaxially grown to ${\beta}$-phase that had lattice structure such as [220]/[202] and [115]. Band gap of the prepared films had value of 1.182~1.174 eV and optical gap energy was shown value of 3.4~3.7 eV. The Urbach tail and the sub-band-gap absorptions were appeared by organic compound in films. We knew that the prepared films by plasma were obtained a good quality films because of being grown single crystal.

  • PDF

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

Synthesis and Characterization of Guanidine Dinitramide Crystal (구아니딘 디나이트라아마이드 결정의 합성 및 특성 분석)

  • Kim, Wooram;Kwon, Younja;Jo, Youngmin;Park, Youngchul
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.737-742
    • /
    • 2015
  • An environmentally favorable solid oxidizer, guanidine dinitramide ($H_2C(NH_2)NH_2N(NO_2)_2$), with high purity and synthesis yield was prepared using guanidine carbonate ($NH_2C(=NH)NH_2{\cdot}1/2H_2CO_3$). Two different crystalline forms (${\alpha}$-form and ${\beta}$-form) were obtained depending on the solvent used and synthesis process. Despite of the same chemical composition, Raman-IR and TGA-DSC revealed that different structures existed between them. In particular, the thermal analysis showed the exothermic temperature of ${\alpha}$-form at $155.7^{\circ}C$ while $191.6^{\circ}C$ for ${\beta}$-form. The caloric value of ${\alpha}$-form was 536.4 J/g which was 2.5 times larger than that of ${\beta}$-form, 1310 J/g. In addition, ${\alpha}$-form was steeply decomposed with one-step variation, but ${\beta}$-form followed a two-step thermal decomposition pattern.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization (제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석)

  • Jeong, Yeonjun;Moon, Byung-Chul;Jang, Min-Chae;Kim, Yangsoo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2014
  • Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

Role of Aluminum Top-layer on Synthesis of Carbon Nanotubes using Laminated Catalyst(Al/Fe/Al) layer (적층구조 촉매층(Al/Fe/Al)을 이용한 탄소나노튜브의 합성에서 최상층 알루미늄 층의 역할)

  • Song, W.;Choi, W.C.;Jeon, C.;Ryu, D.H.;Lee, S.Y.;Shin, Y.S.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • In this study, we report the synthesis of the single-walled carbon nanotubes(SWCNTs) using laminated catalyst(Al/Fe/Al) layer deposited by sputter on Si(001). SWCNTs are grown by thermal chemical vapor deposition (TCVD) method. As the results of scanning electron microscopy(SEM), high resolution transmission electron microscopy(HR-TEM) and Raman spectroscopy, we confirmed the SWCNTs bundles with narrow diameter distribution of $1.14{\sim}1.32\;nm$ and average G&D ratio of 22.76. Compare to the sample having Fe/Al catalyst layer, it can be proposed that the top-aluminum incorporated with iron catalyst plays an important role in growing process of CNTs as a agglomeration barrier of the Fe catalyst. Thus, we suggest that a proper quantity of aluminium metal incorporated in Fe catalyst induce small and uniform iron catalysts causing SWCNTs with narrow diameter distribution.

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Electrochemical Performances of Acid-Treated and Pyrolyzed Cokes According to Acid Treatment Time (산처리 시간별 산화 코크스와 열분해 코크스의 전기화학적 거동)

  • Kim, Ick-Jun;Yang, Sunhye;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.407-412
    • /
    • 2008
  • As an activation procedure, in this study, the oxidation treatment of needle cokes with a dilute nitric acid and sodium chlorate $(NaClO_3)$, combined with heat treatment, was attempted. The structures of acid-treated and pyrolyzed coke were examined with XRD, FESEM, elemental analyzer, BET, and Raman spectroscopy. The behavior of double layer capacitance was investigated with the analysis of charge and discharge. The structure of needle coke treated with acid was revealed to a single phase of (001) diffraction peak after 24 h. On the other hand, thecoke oxidized by heat treatment was reduced to a graphite structure of (002) at $300^{\circ}C$. The distorted graphene layer structure, derived from the process of oxidation and reduction of the inter-layer, makes the pores by the electric field activation at the first charge, and generates the double layer capacitance from the second charge. The cell using pyrolyzed coke with 24 h acid treatment and $300^{\circ}C$ heat treatment exhibited the maximum capacitance per weight and volume of 33 F/g and 30 F/mL at the two-electrode system in the potential range of 0~2.5 V.

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Relationship Between Annealing Temperature and Structural Properties of BaTiO3 Thin Films Grown on p-Si Substrates (p-Si 기판에 성장한 BaTiO3 박막의 어닐링온도와 구조적 특성과의 관계)

  • Min, Ki-Deuk;Kim, Dong-Jin;Lee, Jong-Won;Park, In-Yong;Kim, Kyu-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.222-227
    • /
    • 2008
  • In this study, $BaTiO_3$ thin films were grown by RF-magnetron sputtering, and the effects of a post-annealing process on the structural characteristics of the $BaTiO_3$ thin films were investigated. For the crystallization of the grown thin films, post-annealing was carried out in air at an annealing temperature that varied from $500-1000^{\circ}C$. XRD results showed that the highest crystal quality was obtained from the samples annealed at $600-700^{\circ}C$. From the SEM analysis, no crystal grains were observed after annealing at temperatures ranging from 500 to $600^{\circ}C$; and 80 nm grains were obtained at $700^{\circ}C$. The surface roughness of the $BaTiO_3$ thin films from AFM measurements and the crystal quality from Raman analysis also showed that the optimum annealing temperature was $700^{\circ}C$. XPS results demonstrated that the binding energy of each element of the thin-film-type $BaTiO_3$ in this study shifted with the annealing temperature. Additionally, a Ti-rich phenomenon was observed for samples annealed at $1000^{\circ}C$. Depth-profiling analysis through a GDS (glow discharge spectrometer) showed that a stoichiometric composition could be obtained when the annealing temperature was in the range of 500 to $700^{\circ}C$. All of the results obtained in this study clearly demonstrate that an annealing temperature of $700^{\circ}C$ results in optimal structural properties of $BaTiO_3$ thin films in terms of their crystal quality, surface roughness, and composition.