• 제목/요약/키워드: Raman process

검색결과 343건 처리시간 0.026초

Change the Properties of Amorphous Carbon Hardmask Film Prepared with the Variation of Process Parameters in Plasma Enhanced Chemical Vapor Depostion Systems

  • Kim, Seok Hwan;Yeo, Sanghak;Yang, Jaeyoung;Park, Keunoh;Hur, Gieung;Lee, Jaeho;Lee, Jaichan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.381.2-381.2
    • /
    • 2014
  • In this study the amorphous carbon films were deposited by PECVD at the substrate temperature range of 250 to $600^{\circ}C$, and the process conditions of higher and lower precursor flow rate, respectively. The temperature was a main parameter to control the density and mirco-structures of carbon films, and their's properties depended with the process temperatrue are changed by controlling precursor flow rate. The precursor feeding rate affect on the plasma ion density and a deposition reactivity. This change of film properties was obtained the instrinsic stress, FT-IR & Raman analysis, refractive index (RI) and ext. coef. (k) measured by ellipsometer. In the process conditions of lower and higher flow rate of precursor it had a different intrinsic stress as a function of the substrate temperature.

  • PDF

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

Development of Nano Crystal Embedded Polymorphous Silicon Thin Film by Neutral Beam Assisted CVD Process at Room Temperature

  • Jang, Jin-Nyoung;Lee, Dong-Hyeok;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.171-171
    • /
    • 2012
  • Neutral beam assisted chemical vapor deposition (NBa-CVD) process has been developed as a nove,l room temperature deposition process for the light-soaking free nano-crystalline silicon (nc-Si) thin films including intrinsic and n-type doped thin film. During formation of nc-Si thin films by the NBa-CVD process with silicon reflector at room temperature, the energetic particles enhance doping efficiency and crystalline phase in nc-Si thin films without additional heating at substrate. The effects of incident NB energy controlled by the reflector bias have been confirmed by Raman spectra analysis. Additionally, TEM images show uniform nc-Si grains which imbedded amorphous phase without incubation layer. The nc-Si films by the NBa-CVD are hardly degenerated by light soaking; the degradations of photoconductivity were just a few percents before and after light irradiation.

  • PDF

A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process

  • Byon, Hye-Ryung;Lim, Hyun-Seob;Song, Hyun-Jae;Choi, Hee-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2056-2060
    • /
    • 2007
  • A successful combination of “oxygen-assisted chemical vapor deposition (CVD) process” and Co catalyst nanoparticles to grow highly pure single walled carbon nanotubes (SWNTs) was demonstrated. Recently, it was reported that addition of small amounts of oxygen during CVD process dramatically increased the purity and yield of carbon nanotubes. However, this strategy could not be applied for discrete Fe nanoparticle catalysts from which appropriate yields of SWNTs could be grown directly on solid substrates, and fabricated into field effect transistors (FETs) quite efficiently. The main reason for this failure is due to the carbothermal reduction which results in SiO2 nanotrench formation. We found that the oxygen-assisted CVD process could be successfully applied for the growth of highly pure SWNTs by switching the catalyst from Fe to Co nanoparticles. The topological morphologies and p-type transistor electrical transport properties of the grown SWNTs were examined by using atomic force microscope (AFM), Raman, and from FET devices fabricated by photolithography.

Color Enhancement of Natural Sapphires by High Pressure High Temperature Process

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.165-170
    • /
    • 2015
  • We employed the high-pressure high temperature (HPHT) process to enhance the colors of natural sapphires to obtain a vivid blue. First, we analyze the content of the coloring agent $Fe_2O_3$ using the wavelength dispersive X-ray fluorescence (WD-XRF) method. The HPHT procedure operates under 1 GPa at various temperatures of 1700, 1750, and $1800^{\circ}C$ for 5 minutes using a cubic press. We determine the color changes using the optical microscopic images, UV-VIS near-infrared (NIR) spectra, micro-Raman spectra, and Fourier transform-infrared (FT-IR) spectra for all sapphire samples before and after the treatment. The optical microscopic results indicate that the HPHT process can enhance the sapphire color to a vivid blue at temperatures above $1750^{\circ}C$. The UV-VIS-NIR spectra identify the color changes explicitly and quantitatively through providing the Lab color scales and color differences. Both results demonstrate that the colors of natural sapphires can be enhanced to a vivid blue using the HPHT process above $1750^{\circ}C$ under 1 GPa for 5 minutes.

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

Investigating the Iron-Making Process through the Scientific Analysis of By-products Obtained during Iron-Making from Songdu-ri Site in Jincheon, Korea

  • Jung, Da Yeon;Cho, Nam Chul
    • 보존과학회지
    • /
    • 제38권1호
    • /
    • pp.33-44
    • /
    • 2022
  • The study, iron-making process was examined through the scientific analysis of six by-products that were obtained during iron making at the Songdu-ri site in Jincheon. The total Fe content of the slags excavated from the Songdu-ri site was 36.29-54.61 wt%, whereas the deoxidation agent was 26.48-49.08 wt%. The compound analysis result indicated that fayalite and wüstite are the main compounds in slag. Furthermore, the microstructure analysis result confirmed the presence of fayalite and wüstite in the slag. It can be inferred from the flat shape in a bright matrix structure of the hammer scales that forging was performed in the latter stage. The Raman micro-spectroscopy results confirmed that the surface was hematite (Fe2O4), middle layer was magnetite (Fe3O4), and inner layer was wüstite (FeO). The presence of smelting and smithing slags, spheroid hammer scales, and flake hammer scales suggests that at the Songdu-ri site, iron-making process is carried out by division of labor into producing iron bloom through direct smelting, refining and forge welding, and ingot production.

저온 균일침전법으로 $TiOCl_2$ 수용액에서 얻은 $TiO_2$ 초미분체의 형성기구 (Formation Mechanism of Ultrafine $TiO_2$ Powders from Aqueous $TiOCl_2$ Solution by Homogeneous Precipitation Process at Low Temperature)

  • 김선재;이희균;박순동;전치중;이창규;김흥회;이은구
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.473-478
    • /
    • 2000
  • The TiO2 powder with the values of the large specific surface area more than 150$m^2$/g has been prepared with the homogeneous precipitation process below 5$0^{\circ}C$ and its formation mechanism was investigated using the SEM, TEM and Raman Spectroscopy. With the spontaneous hydrolysis of aqueous TiOCl2 solutions, all the precipitates were fully and homogeneously crystallized with the rutile TiO2 phase simply by heating, which as transformed to the anatase TiO2 phase as increasing the addition of SO42- ions to the aqueous TiOCl2 solution. The precipitates were formed with spherical secondary particles which consisted of acicular, spherical and mixed primary particles corresponding to the rutile, anatase and mixed phases, respectively. It can be thought that the formation and phase determination of crystalline TiO2 powders even at ambient temperature would be related with the existence of the capillary force. This force might be varied depending on the shape change of the primary particles.

  • PDF

UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법 (Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process)

  • 강재운;박홍식
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.

Characterization of a Smelting Furnace in Ungyo Site in Wanju, Jeollabuk-do, Through Slag Analysis

  • Lee, Su Jeong;Cho, Nam Chul;Kang, Byoung Sun
    • 보존과학회지
    • /
    • 제35권4호
    • /
    • pp.373-383
    • /
    • 2019
  • We characterized the smelting process and smelting furnace through scanning electron microscopy-energy dispersive spectroscopy, wavelength dispersive X-ray fluorescence, X-ray diffraction, and raman micro-spectroscopy with 13 relics including slags and furnace walls excavated from square-shaped building sites and pits of the Three Kingdoms site at the Ungyo site section I. Our results revealed that the principal components were FeO and SiO2; and CuO, PbO, and ZnO were contained in small quantities. Furthermore, fayalite, magnetite, augite, copper, and cuprite were found. High contents of FeO or SiO2 components seem to have been added to form fayalite to remove gangue in the smelting process. The relatively low content of S detected in the copper prills suggests that roasting was performed well. Cristobalite and mullite, which are minerals that indicate high-temperature found in the furnace wall, show that the smelting temperature was higher than 1,250℃. The findings of this study show a high possibility that the Wanju Ungyo site is smelting remains of copper ores, which are nonferrous metals, rather than iron. Various smelting byproducts excavated in this area in the future will help us better understand the copper smelting process that may have been performed since ancient times.