• Title/Summary/Keyword: Ralstonia Eutropha

Search Result 32, Processing Time 0.018 seconds

Production of Enantiomerically Pure [R]-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli with Inducible System (Inducible System을 이용한 재조합 대장균으로부터 광학적으로 순수한 [R]-3-Hydroxybutyric acid 생산)

  • 이영;최종일;이상엽
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.327-330
    • /
    • 2004
  • An inducible expression system of poly[(R)-3-hydroxybutyrate] (PHB) depolymerization was established in metabolically engineered Escherichia coli with the PHB biosynthesis genes. The Ralstonia eutropha PHB depolymerase gene was cloned in a vector system containing the PHB biosynthesis genes and expressed under inducible promoter. Recombinant E. coli harboring the PHB biosynthesis genes and depolymerase gene was first cultured for the accumulation of PHB, and then the depolymerase was expressed resulting in the degradation of accumulated PHB into (R)-3-hydroxybutyric acid (R3HB). R3HB could be produced with the concentration of 7.6 g/L in flask culture. Two different PHB biosynthesis genes from Alcaligenes latus and R. eutropha were compared for the production of R3HB. This strategy can be used for the production of enantiomerically pure (R)-hydroxycarboxylic acids with high concentration.

A Recombinant Soil Bacterium Which Efficiently Degrades Trichloroethylene (삼염화에틸렌을 분해하는 유전자재조합 토양세균에 관한 연구)

  • Kim, Young-Jun;Han, Gee-Bong;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.49-56
    • /
    • 2003
  • The strain Ralstonia eutopha JMP134 (formerly Alcaligenes eutrophus JMP134) can degrade trichloroethylene(TCE) through a chromosomal phenol-dependent pathway. The phenol hydroxylase was previously found to be a single responsible enzyme for TEC degradation. Here, we demonstrate that a recombinant bacterium, R. eutopha AEK301, one of Tn5-induced mutants of JMP134 containing a recombinant plasmid pYK3011, degrades TCE in the absence of inducer, phenol and in the presence of various carbon sources. Complete removal of TCE ($50{\mu}M$) was observed in minimal medium containing only 0.05% ethanol as a carbon source within 24 hours. The bacterium removed $200{\mu}M$ of TCE to below detectable level within two days under non-selective pressure. When TCE concentration was increased up to $400{\mu}M$, the degradation had been continued until two days, then ceased with removal of 70% of detectable TCE.

  • PDF

Economic Consideration of Poly(3-hydroxybutyrate) Production by Fed-batch Culture of Ralstonia eutropha KHB 8862 (Ralstonia eutropha의 유가식 발효에 의한 Poly(3-hydroxybutyrate) 생산의 경제성 분석)

  • 김갑진;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.92-99
    • /
    • 2001
  • High-cell-density cultivation of Ralstonia eutopha KHB 8862 by fed-batch fermentation in a 200 l pilot plant was carried out for the mass production of poly(3-hydroxybutyrate) (PHB). After 80 h of cultivation, the dry cell weight (DCW), PHB concentration, and PHB yield from fructose syrup reached 168 g/l, 74%DCW, and 0.27 (w/w), respectively, resulting in a productivity of 1.6 g of PHB/L/h. Based on these results, the PHB production cost from bacterial fermentation was analyzed and economic evaluation was performed. In the case of new investment being implemented or not, the production cost of PHB was US$ 3.15/kg and US$ 2.41/kg, respectively. PHB productivity and PHB yield on a carbon substrate were both important factors to be optimized. The increase of PHB yield on a carbon sources significantly decreased the PHB production cost but the increase in productivity had a relatively slight effect on the decrease in PHB production cost because the cost of carbon sources (37%) for PHB was larger in proportion to total cost than the depreciation cost (17%). These results suggest that the increased PHB yield from carbon sources and the development of new cheaper substrates would be more effective in decreasing PHB production cost than the increase in productivity. It was demonstrated that PHB is not in competition with consumable plastics such as PET in present market. Therefore, it is essential to lower production cost to be used as a bulk product and desirable to develop new application fields for PHB such as biomedical and cosmeceuticals.

  • PDF

Effects of Glucose concentration on the production of poly(3-hydroxybutyrate) by high cell density culture of Ralstonia eutropha

  • Shang, Longan;Kim, Do-Yun;Kim, Moon-Il;Kim, Byoung-Jin;Chang, Ho-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.213-217
    • /
    • 2003
  • The effects of glucose concentration on the production of PHB by fed-batch culture of Ralstonia eutropha were investigated. In the range of glucose concentration of $2.5\;{\sim}\;40\;g/l$, it was found that the high glucose concentration was not favorable for the PHB formation after the phosphate limitation. It was further confirmed by the specific PHB synthesis rates and yields. The PHB concentration decreased much with the increase of glucose concentration. But if the glucose concentration was very low, e.g. 2.5 g/l, the cell growth and PHB synthesis also could be limited because of inadequate glucose supply. Itwould be better to maintain the glucose concentration at about 9.0 g/l to obtain high DCW, PHB concentration and productivity.

  • PDF

Regulation of Phenol Metabolism in Ralstonia eutropha JMP134

  • Kim Youngjun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.27-30
    • /
    • 2002
  • Ralstonia eutrupha JMP134 is a well-known soil bacterium which can metabolite diverse aromatic compounds and xenobiotics, such as phenol, 2,4-dichlorophenoxy acetic acid (2, 4-D), and trichloroethylene (TCE), etc. Phenol is degraded through chromosomally encoded phenol degradation pathway. Phenol is first metabolized into catechol by a multicomponent phenol hydroxylase, which is further metabolized to TCA cycle intermediates via a meta-cleavage pathway. The nucleotide sequences of the genes for the phenol hydroxylase have previously been determined, and found to composed of eight genes phlKLMNOPRX in an operon structure. The phlR, whose gene product is a NtrC-like transcriptional activator, was found to be located at the internal region of the structural genes, which is not the case in most bacteria where the regulatory genes lie near the structural genes. In addition to this regulatory gene, we found other regulatory genes, the phlA and phlR2, downstream of the phlX. These genes were found to be overlapped and hence likely to be co-transcribed. The protein similarity analysis has revealed that the PhlA belongs to the GntR family, which are known to be negative regulators, whereas the PhlR2 shares high homology with the NtrC-type family of transcriptional activators like the PhlR. Disruption of the phlA by insertional mutation has led to the constitutive expression of the activity of phenol hydroxylase in JMP134, indicating that PhlA is a negative regulator. Possible regulatory mechanisms of phenol metabolism in R. eutropha JMP134 has been discussed.

  • PDF

Preparation and Characterization of Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Microsphere (Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] 미립구의 제조 및 특성화)

  • Kang, Hye-Su;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.146-150
    • /
    • 2007
  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] microspheres were prepared using solvent evaporation technique. P(3HB-co-4HB) with 3.9 mol% 4HB was synthesized by fed-batch culture of Ralstonia eutropha. The effects of concentration and type of surfactant (Tween 80, sodium dodecylsulfate, and polyvinyl alcohol), addition of dispersion stabilizer (Acacia), concentration of polymer and model drug (bovine serum albumin) on particle size of the microspheres and their in vitro drug release characteristics were investigated. The average particle size of the microspheres decreased with the addition of dispersion stabilizer and increased with the concentration of surfactant, drug and polymer. Amount of drug release increased with decreasing particle size of the microspheres.

Characteristics of Several Bacterial Isolates Capable of Degrading Chloroaliphatic Compounds via Hydrolytic Dechlorination

  • Song, Ji-Sook;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • Haloaliphatic hydrocarbons have been widely used as solvents and ingredients of pesticides and herbicides. However, when these compounds contaminate the environment, they can be very hazardous to animals and humans because of their potential toxicity and carcinogenicity. Therefore, lots of studies have been made for microbial degradation of those pollutant chemicals. In this study, 11 bacterial strains capable of degrading 1,2-dichloroethane (1,2-DCA), 2-chloropropionic acid (2-CPA), 2,3-dichloropropionic acid (2,3-DCPA), and 2-monochloroacetic acid (2-MCA) by hydrolytic dechlorination under aerobic conditions were isolated from wastewaters and rice paddy soil samples. Their morphological and biochemical characteristics and their degradation capabilities of haloaliphatic hydrocarbons were examined. On the basis of the 16S rDNA sequences, 8 different kinds of microbial species, including Pseudomonas plecoglossicida, Xanthobacter flavus, Ralstonia eutropha, were identified. All of the isolated strains can degrade MCA. In particular, strains UE-2 and UE-15 degraded 1,2-DCA, and strain CA-11 degraded 2,3-DCPA, which are hardly degraded by other strains.

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid (재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구)

  • Park, Si Jae;Lee, Seung Hwan;Oh, Young Hoon;Lee, Sang Yup
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

In vitro Polymerization and Copolymerization of Poly-3-hydroxypropionyl-CoA with the PHB Synthase from Ralstonia eutropha

  • Song, Jae-Jun;Goodwin, Steve;Lenz, Robert W.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.48-51
    • /
    • 2000
  • The poly(3-hydroxybutyrate) (PHB) synthase of Ralstonia. eutropha, which was produced by a recombinant strain E. coli and purified in one-step with a methyl-HIC column to a purity of more than 90%, was used to polymerize 3-hydroxypropionyl-CoA (3HPCoA) and to copolymerize 3HPCoA with 3-hydroxybutyryl-CoA (3HBCoA) in vitro. A $K_m$ of $189\;{\mu}M$ and a $k_{cat}$ of $10\;sec^{-1}$ were determined for the activity of the enzyme in the polymerization reaction of 3HPCoA based on the assumption that the dimer form of PHB synthase was the active form. Free coenzyme A was found to be a very effective competitive inhibitor for the polymerization of 3HPCoA with a $K_i$ of $85\;{\mu}M$. The maximum degree of conversion of 3HPCoA to polymer was less than 40 %. In the simultaneous copolymerization reactions of these two monomers, both the turnover number for the copolymerization reaction and the maximum degree of conversion of 3HPCoA and 3HBCoA to copolymers increased with an increase in the amount of 3HBCoA in the monomer mixture. However, the maximum conversion of 3HPCoA to a copolymer was less than 35 % regardless of the ratio of 3HPCoA to 3HBCoA. Block copolymers were obtained by the sequential copolymerization of the two monomers and these copolymers had a much narrower molecular weight distribution than those obtained by the simultaneous copolymerization of the same molar ratio of 3HPCoA and 3HBCoA.

  • PDF