• Title/Summary/Keyword: Rake Finger

Search Result 12, Processing Time 0.02 seconds

A Study on Performance Improvement of Mobile Rake Finger System for the IMT-2000 (IMT-2000을 위한 이동국 Rake Finger 시스템 성능개선에 관한 연구)

  • 정우열;이선근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.135-142
    • /
    • 2002
  • In this paper, we proposed the new structure of the Rake Finger using Walsh Switch, the shared accumulator and the pipeline FWHT algorithm for reducing the signal processing complexity resulting from the increase of the number of data correlators. The number of computational operation in the proposed data correlators is 160 additions when the number of walsh code channels is 4. As a result, it is reduced about 3.2 times other than the number of computational operation of the conventional ones. Also, the result shows that the data processing time of the proposed Rake Finger architecture is 90,496〔ns〕 and the conventional ones is 110,696〔ns〕. It is 18.3% faster than the data processing time of the conventional Rake Finger architecture.

  • PDF

A Study on Performance Improvement of Mobile Rake Finger for Multirate (Multirate를 위한 이동국 Rake Finger의 성능 개선에 관한 연구)

  • Kim, Jong-Youb;Lee, Seon-Keun;Park, Hyoung-Keun;Park, Hwan-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.66-74
    • /
    • 2001
  • In this paper, we proposed the new structure of the Rake Finger using Walsh Switch, the shared accumulator, and the pipeline FWHT(Fast Walsh Hadamard Transform) algorithm for reducing the signal processing complexity resulting from the increase of the number of data correlators. The function simulation of the proposed architecture is performed by Synopsys tool and the timing simulation is performed by Compass tool. The number of computational operation in the proposed data correlators is 160 additions and the conventional ones is 512 additions when the number of walsh code channels is 4. As a result, it is reduced about 3.2 times other than the number of computational operation of the conventional ones. Also, the result shows that the data processing time of the proposed Rake Finger architecture is 90,496[ns] and the conventional ones is 110,696[ns]. It is 18.3% faster than the data processing time of the conventional Rake Finger architecture.

  • PDF

A Study on the Rake Finger System Design for the System Performance Improvement in the Mobile Communications (시스템 효율향상을 위한 이동통신망 Rake Finger 시스템 설계에 관한 연구)

  • Lee Seon-Keun;Lim Soon-Ja
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.31-36
    • /
    • 2004
  • In this paper, we proposed the new structure of the Rake Finger using Walsh Switch, the shared accumulator, and the pipeline-FWHT algorithm for reducing the signal processing complexity resulting from the increase of the number of data correlator. The function simulation of the proposed architecture is performed by Synopsys tool and the timing simulation is performed by Compass tool. The number of computational operation in the proposed data correlators is 160 additions and the conventional ones is 512 additions when the number of walsh code N=4. As a result, it is reduced about 3.2 times other than the number of computational operation of the conventional ones. Also, the result shows that the data processing time of the proposed Rake Finger architecture is 90,496[ns] and the conventional ones is 110,696[ns]. It is $18.3\%$ faster than the data processing time of the conventional Rake Finger architecture.

Impact of Multipath Fading on the Performance of the DDLMS Based Spatio Temporal Smart Antenna (다중경로페이딩이 DDLMS 기반 스마트 안테나의 성능에 미치는 영향)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.871-879
    • /
    • 2009
  • The performance variations of a spatio temporal smart antenna which is equipped at the basestation of CDMA cellular communication network due to the parametric change of multipath fading environment are studied in this paper. The smart antenna of interest employs space diversity based adaptive array structure in conjunction with rake receiver that has fingers the number of which is the same as that of multipath links. The beamforming is achieved via LMS(Least Mean Square) algorithm in which a reference signal is generated using decision directed formula. It has been shown by computer simulation that the performance of our smart antenna of interest depends significantly upon not only the degree of desired signal's DOA(Direction of Arrival)spread but the number of fingers of the rake receiver. The relative insensitivity of the smart antenna's performance on desired signal's delay spread has also been observed. Computer simulation has shown that the increase of the number of fingers brings in a nonlinear enhancement of the performance of our smart antenna. The renewal of weight vector in the beamforming procedure is taken place at post PN despread stage.

Performance Evaluation of the Satellite-DMB system with a Frequency Domain Equalizer (주파수 영역 등화기가 적용된 위성 DMB 시스템의 성능 분석)

  • Lee Jae-Sung;Kim Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.509-516
    • /
    • 2006
  • Satellite-Digital Multimedia Broadcasting(S-DMB) systems are single frequency networks which consist of a satellite and gap fillers. Though gap fillers are required to extend the coverage to NLOS(Non Line-of-Sight) area, the receiver performance can be degraded with a limited number of fingers due to the increased number of multi-paths. The paper proposes to use frequency domain equalizer(FDE) instead of conventional Rake receiver, where the guard interval is not considered in order to minimize the impact on the current S-DMB systems. Through a campaign of simulations, it is found that the proposed FDE is less sensitive to the number of gap fillers compared to the conventional Rake receiver, and can achieve a greater channel capacity in most channel environments.

Multiple Finger Expansion for Blind Interference Canceller in the Presence of Subchip-Spaced Multipath Components

  • Quek, Tony Q. S.;Suzuki, Hiroshi;Fukawa, Kazuhiko
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • A blind interference canceller in the presence of subchipspaced multipath channels for direct-sequence code division multiple access (DS-CDMA) down-link system is considered. This technique is based on combining the existing blind interference canceller with a technique that involves assigning subchip-tap spacing to the Rake receiver. The proposed receiver minimizes the receiver’s output energy subject to a constraint in order to mitigate the multiple access interference (MAI) along each multipath component, and then suboptimally combining all the multipath components. Moreover, it is able to mitigate the mismatch problem when subchip-spaced multipath components arrive at the blind interference canceller. It is known that optimal combining techniques perform a decorrelation operation before combining, which requires both knowledge and computational complexity. In the following, we have adopted a simpler but suboptimum approach in the combining of the suppressed signals at the output of our proposed receiver. Computer simulation results verify the effectiveness of the proposed receiver to handle subchip-spaced multipath components and still suppresses MAI significantly.

On the error rate of multicode-CDMA system in frequency selective fading channel (주파수 선택적 페이딩 채널에서 멀티코드 CDMA 시스템의 성능 분석)

  • 김연진;김남수;김민택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.932-939
    • /
    • 1998
  • In this paper, we analyze the performance of a multicode-CDMA system which have been proposed for the multimedia communications. The performance of a multicode-CDMA system, providing good spectrum efficiency as well as serving various bit rates, is analyzed with multipath, frequency selective, slowly fading Rayleigh channel. Also the proposed scheme adopting RAKE receiver with MRC(Maximal Ratio Combine) is advantageous to multipath channel. For a practical channel modeling, the JTC(Joint Technical Committee) recommended channel model(JTC(AIR) 23-065R6) is applied to simulation. The proposed schemehas serial-to-parallel convertor which splits input data stream of 2 Mits/s into 20 branches o 100 kbits/s. From the result of simulation, the case of RAKE receiver with 3 fingers to reduce the system complexity required the relatively large $E_{b}/N_O$ of 0 dB~1.5 dB, compared to the case of RAKE receiver with the number of path finger to keep the average error rate to be $1{\times}10^{-3}$ in channel A.

  • PDF

Symbol Timing Alignment and Combining Technique in Rake Receiver for cdma2000 Systems (cdma2000 시스템용 레이크 수신기에서의 심볼 정렬 및 컴바이닝 기법)

  • Lee, Seong-Ju;Kim, Jae-Seok;Eo, Ik-Su;Kim, Gyeong-Su
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • In the conventional rake receiver structure for the IS-95 CDMA system, each finger has its own time-deskew buffer or FIFO that aligns the multipath signals to the same timing reference in order to combine symbols. This architecture is not a burden to the rake receiver design mainly because of the small number and size of the buffers. However, the number and size of the buffers are significantly increased in the cdma2000 system which adopts multiple carriers and the small spreading gain for a higher rate in data services. In order to decrease the number of buffers, we propose a new model of the time-deskew buffers, which combines the symbols as well as realigns them at the same time. Our architecture reduces the hardware complexity of the buffers by about more than 60% and 70% compared with the conventional one when we consider each rake receiver has three and four independent fingers, respectively. Moreover, the proposed algorithm is very useful not only to the cdma2000 rake receiver but also to the receiver with many fingers in order to increase the BER performance.

Performance Analysis of UWB Systems in the Presence of Timing Jitter

  • Guvenc, Ismail;Arslan, Huseyin
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2004
  • In this paper, performances of different ultra-wideband (UWB) modulation schemes in the presence of timing jitter are evaluated and compared. Static and Rayleigh fading channels are considered. For fading channels, Oat and dispersive channels are assumed. First, bit error rate (BER) performances for each case are derived for a fixed value of timing jitter. Later, a uniform distribution of jitter is assumed to evaluate the performance of the system, and the theoretical results are verified by computer simulations. Finger estimation error is treated as timing jitter and an appropriate model is generated. Furthermore, a worst case distribution that provides an upper bound on the system performance is presented and compared with other distributions. Effects of timing jitter on systems employing different pulse shapes are analyzed to show the dependency of UWB performance on pulse shape. Although our analysis assumes uniform timing jitter, our framework can be used to evaluate the BER performance for any given probability distribution function of the jitter.

Performance Comparison of UWB DS-CDMA/OFDM/MC-CDMA System in S-V Channel Environment (S-V채널 환경에서 UWB DS-CDMA/OFDM/MC-CDMA 시스템 성능 비교)

  • Lee Hyung-Ki;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.53-60
    • /
    • 2005
  • In this paper, we analyze the performance of UWB MC-CDMA system and compareit with DS-CDMA and OFDM systems, which have been drafting in standardization even now. Too many Rake Fingers are needed in the DS-CDMA system to separate multi-path signals, which results in highsystem complexity. OFDM radio power fails to qualify for FCC certification unless frequency hopping. From this reason, MC-CDMA system considered is proposed in this paper. It has lower complexity compared with DS-CDMA and shows good performance against frequency selective fading. In addition, for a wide-band communication, less radio power per spectrum is allowed in the MC-CDMA system than in an OFDM system. Simulation result show that the DS-CDMA system has better performance with single user, but MC-CDMA system shows best performance in case of multi user environment.