• Title/Summary/Keyword: Raising Temperature

Search Result 277, Processing Time 0.023 seconds

Research on Thermal Comfort by Increasing Air Conditioner Temperature (에어컨 온도상승에 따른 온열쾌적성 변화에 관한 연구)

  • Kim, Hyung-Chul;Kum, Jong-Soo;KIM, Dong-Gyu;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • This research evaluates thermal comfort by comparing the case of maintain cooing temperature of room with the case of raising it at the point of time that human body begins to adapt. An experiment uses constant temperature & humidity chamber 2 places. Pretesting room make up summer season environment, the testing room control by air-conditioner. In condition that maintain temperature of $33^{\circ}C$. The subjects stay in the pretesting room during the 30 minute for the heat storage amount of the normal summertime. The subjects stay in the testing room under each case (case 1: maintaining $24^{\circ}C$, case 2: maintaining $26^{\circ}C$, case 3: up $1^{\circ}C$ after maintaining $24^{\circ}C$ during 30 minute, case 4: up $1^{\circ}C$ after maintaining $26^{\circ}C$ during 40 minute). 1. Result of comparison of case 1 and case 2 appears that thermal sensitive vote examine from slight cool to cool and thermal comfort examine slight comfort by temperature rise at human body adaptation point of time.2. Test of case 3 and case 4 appear similar value at thermal sensitive vote and thermal comfort.3. Through the case 2 and case 4, continuous thermal comfort maintain at $24^{\circ}C$, if raise $26^{\circ}C$, same thermal comfort maintain after a human body adaptation temperature rising effect bring energy saving.

Influence of the Differences in Altitude during Raising Seedlings on Daughter Plant Characteristics and Subsequent Strawberry Production (육묘 기간중의 고도 차이가 자묘의 특성 및 딸기 수량에 미치는 영향)

  • Lee, Jong-Nam;Lim, Ju-Sung;Lee, Jun-Gu;Nam, Chun-Woo;Kim, Ki-Deog;Lee, Eung-Ho;Yeoung, Young-Rog
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.540-544
    • /
    • 2010
  • The nursery plant quality and flower bud induction of new strawberry cultivars, 'Maehyang' and 'Seolhyang' in forcing culture were evaluated in the highland and lowland region. In order to produce daughter plants, the new cultivars were grown in the open field located at both highland (Daekwallyung, above 800 m sea level) and lowland (Gangneung, above 20 m sea level) region, respectively. The average air temperature at highland during nursery plant propagation period was $5.3^{\circ}C$ lower than those at lowland. The number of daughter plants produced at lowland was 2 times as high as those of highland, presumably due to the higher air temperature. Anthracnose incidence rates of runner plants produced at lowland were 4 to 7% as high as those in highland. Mean temperature in the highland ($23.5^{\circ}C$) during flower bud differentiation treatment was $5.1^{\circ}C$ lower than that in the lowland ($28.6^{\circ}C$). Seedlings produced in highland showed higher C/N ratio and lower T/R ratio compared to those produced in lowland. The average flower bud formation date of the daughter plants grown in highland were advanced by 30 days compared to the date in lowland. Accordingly, highland was supposed to be appropriate region for raising seedlings in forcing culture of the new strawberry cultivars of 'Maehyang' and 'Seolhyang'.

Characterization of viable but non-culturable (VBNC) Edwardsiella piscicida (난배양성(viable but non-culturable; VBNC) Edwardsiella piscicida의 특성 연구)

  • Ahyun Kim;Yoonhang Lee;HyeongJin Roh;Young-Ung Heo;Nameun Kim;Do-Hyung Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • A viable but non-culturable (VBNC) state is a survival strategy adopted by bacteria when faced with unfavorable environmental conditions, rendering them unable to grow on nutrient agar while maintaining low metabolic activity. This study explored the impact of temperature and nutrient availability on inducing VBNC state in Edwardsiella piscicida, the most important bacterial fish pathogen, and assessed its pathogenicity at VBNC state. E. piscicida was suspended in filtered sterile seawater and exposed to three different temperatures (4, 10, and 25℃) to induce the VBNC state. Subsequently, the induced VBNC cells were subjected to resuscitation by either raising the temperature to 28℃ or inoculating them in brain heart infusion broth supplemented with 1% NaCl. A propidium monoazide (PMA)-qPCR method was also developed to selectively quantify live (VBNC or culturable) E. piscicida cells. The results showed that the bacteria entered the VBNC state after approximately 1 month at 4℃ and 25℃, and 2 months at 10℃. The VBNC E. piscicida cells were successfully revived within 3 days in a nutrient-rich environment at 28℃, highlighting the significance of temperature and nutrition in inducing and resuscitating the VBNC state. In pathogenicity tests, resuscitated E. piscicida cells exhibited high pathogenicity in olive flounder comparable to cultured bacteria, while VBNC cells showed no signs of infection, suggesting they are unlikely to resuscitate in fish. In conclusion, this study contributes to our understanding of fish pathogen ecology by investigating the characteristics of the VBNC state under varying temperature and nutrition conditions.

An Analysis of Wind environment on the Basis of reclassified Zoning (주거지역 종세분화에 따른 바람환경 분석)

  • Lee, Jun-Young;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.109-112
    • /
    • 2009
  • Various environmental problems due to the rapid industralization and urbanization have been worsened as much as to threaten the environmental restitution of globe and become a critical international issue. Korean government presented the green growth as a new state vision for 60 years afterwards and is making efforts to solve the environmental problems. Daegu metropolitan city has faced various environmental problems including overpopulation of cities, traffic pollution, household wastes and green zone problem because of urbanization for the last decades. As such urbanism continues, the quality of residential environment is rapidly deteriorating and the intensive use of land leads to increase of building area raising the temperature of cities. Therefore there have been demands for the healthy, pleasant and satisfying residential environment and the improvement of residential environment and such recognition rises from society in full measure. Nevertheless the current residential complex concentrates only on raising the efficiency of land use. Related laws in the past(Daegu Metropolitan City, Urban Planning Municipal Ordinance as of October 10, 2003) tried to prepare a standard to segmentalize the building-to-land ratio, floor area ratio and regulations of number of floors vertically, but currently it is abolished and the regulations are becoming eased. The purpose of this study was to analyze the characteristics of the floating wind before and after the vertical segmentation of residential areas(Daegu Metropolitan City, Urban Planning Municipal Ordinance as of October 10, 2003) by using KLAM_21, a model that enables analysing and predicting the flow and generation of clod wind, and to present a plan to improve the quality of residential areas afterwards when developing building lot and re-developing housing areas.

  • PDF

Experimental Study on R-410A Evaporation Heat Transfer Characteristics in Shell and Plate Heat Exchanger (셀 앤 플레이트 열 교환기에서의 R-410A 증발열전달에 관한 실험적 연구)

  • Kim In-Kwan;Kim Young-Soo;Park Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2005
  • The evaporation heat transfer experiments are conducted with the shell and plate heat exchanger (S&PHE) without oil in the refrigerant loop using R-410A. An experimental refrigerant loop has been established to measure the evaporation heat transfer coefficient h. of R-410A in a vertical S&PHE. Two vertical counter flow channels were formed in the S&PHE by three plates haying a corrugated trapezoid shape of a $45^{\circ}C$ chevron angle. UP flow of the boiling R-410A in one channel receives heat from the hot down flow of water in the other channel The effects of the refrigerant mass flux. average heat flux. refrigerant saturation temperature and vapor qualify are explored in detail. Similar to the case of a plate heat exchanger. even at a very low Reynolds number, the flow in the S&PHE remains turbulent. The Present data shows that the evaporation heat transfer coefficients of R-410A increased with the vapor qualify. The results indicate a rise in the refrigerant mass flux caused an increase in the h.. Raising the imposed wall heat flux is found to slightly improve h., while h, is found to be lower at a higher refrigerant saturation temperature. Based on the present data. empirical correlation of the evaporation heat transfer coefficient is proposed.

Improvements of GC and HPLC Analyses in Solvent (Acetone-Butanol-Ethanol) Fermentation by Clostridium saccharobutylicum Using a Mixture of Starch and Glycerol as Carbon Source

  • Tsuey, Liew Shiau;Ariff, Arbakariya Bin;Mohamad, Rosfarizan;Rahim, Raha Abdul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • A study on the feasibility of using improved computer-controlled HPLC and GC systems was carried out to shorten the time needed for measuring levels of the substrates (glucose, maltose, and glycerol) and products (acetone, butanol ethanol, acetic acid, and butyric acid) produced by Clostridium saccharobutylicum DSM 13864 during direct fermentation of sago starch to solvent. The use of HPLC system with a single injection to analyse the composition of culture broth (substrates and products) during solvent fermentation was achieved by raising the column temperature to $80^{\circ}C$. Although good separation of the components in the mixture was achieved, a slight overlap was observed in the peaks for butyric acid and acetone. The shape of the peak obtained and the analysis time of 26.66 min were satisfactory at a fixed flow rate of 0.8mL/min. An improved GC system was developed, that was able to measure the products of solvent fermentation (acetone, butanol, ethanol, acetic acid, and butyric acid) within 19.28 min. Excellent resolution for each peak was achieved by adjusting the oven temperature to $65^{\circ}C$.

Development of Red-Tide Prediction Technique Using Quartz Crystal Oscillator (수정진동자를 이용한 적조예측 방법의 개발)

  • Kim, Byoung-Chul;Kim, Young-Han;Chang, Sang-Mok
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.573-578
    • /
    • 2004
  • The most important effects on algae multiplication are coming from maintaining the growth environment such as necessary nutrients and proper temperature, but it is difficult to adjust for every species individually. In this study, therefore, the environment is obtained using the local water where target organisms live, and their growth is promoted by raising the water temperature. A sensor to count the organism population is developed here. Because the early stage of a sudden increase of the algae population is detected using the sensor, it is available to predict the sudden increase of algae, a source of red tide.

A Study on the GIS for The Sea Environmental Management I - Focus on the Study of A Interpolation on The Application of LDI Algorism - (GIS를 활용한 해양환경관리에 관한 연구 I - LDI 알고리즘 적용을 위한 보간법에 관한 연구 -)

  • Lee, Hyoung Min;Park, GI Hark
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.443-452
    • /
    • 2006
  • Today, satellite remote sensing (RS) and geographic information systems (GIS) plays an important role as an advanced science and technology. This study was developed a Line Density Algorithm which was clarify and describe the thermal front by using NOAA SST (sea surface temperature) and GIS spatial analysis for systemic and effective management of fish raising industry and sea environmental pollution by land reclamation program. Before this, a study about a interpolation method was carry out which was very important for estimate the hidden value between a special point. For this study Inverse Distance Weighted interpolation, Spline interpolation, Kriging interpolation methods were choose and SST data from 2001 to 2004 in spring (March, April, May) were analyzed. According to the study Kriging interpolation method was the very adaptive method from a practical point of view and excellent in description and precision then others. Finally, the result of this study will be use for develope the Line Density Index Algorism.

The prediction of atmospheric concentrations of toluene using artificial neural network methods in Tehran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Mehdinejad, Mahdi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.219-231
    • /
    • 2015
  • In recent years, raising air pollutants has become as a big concern, especially in metropolitan cities such as Tehran. Therefore, forecasting the level of pollutants plays a significant role in air quality management. One of the forecasting tools that can be used is an artificial neural network which is able to model the complicated process of air pollution. In this study, we applied two different methods of artificial neural networks, the Multilayer Perceptron (MLP) and Radial Basis Function (RBF), to predict the hourly air concentrations of toluene in Tehran. Hourly temperature, wind speed, humidity and $NO_x$ were selected as inputs. Both methods had acceptable results; however, the RBF neural network produced better results. The coefficient of determination ($R^2$) between the observed and predicted data was 0.9642 and 0.99 for MLP and RBF neural networks, respectively. The results of the mean bias errors (MBE) were 0.00 and -0.014 for RBF and MLP, respectively which indicate the adequacy of the models. The index of agreement (IA) between the observed and predicted data was 0.999 and 0.994 in the RBF and the MLP, respectively which indicates the efficiency of the models. Finally, sensitivity analysis related to the MLP neural network determined that temperature was the most significant factor in air concentration of toluene in Tehran which may be due to the volatile nature of toluene.

Status of the technology development of large scale HTS generators for wind turbine

  • Le, T.D.;Kim, J.H.;Kim, D.J.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.18-24
    • /
    • 2015
  • Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design - operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.