• Title/Summary/Keyword: Raised Girder

Search Result 7, Processing Time 0.026 seconds

A Study on the Static and Dynamic Characteristics of Raised Girder Bridges (양각 거더교의 정적·동적특성에 관한 연구)

  • Ji-Yeon Lee;Sung Kim;Sung-Jin Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.851-858
    • /
    • 2023
  • Purpose: A study was conducted to ensure the structural safety of a raised girder bridge with improved cross-sectional efficiency compared to the conventional PSC girder. For this purpose, the cross-sectional specifications such as girder length, height, and width were determined, the arrangement of the tendons was designed, and the practical performance of the raised girder under static and dynamic loads was verified. Method: The static performance experiment examined the serviceability limit state by measuring behavioral responses such as deflection and cracking to primary and secondary static loads. In addition, the dynamic load loading experiment measured the acceleration and displacement behavior response over time to calculate the natural frequency and damping ratio to examine the usability limit state. Result: As a result of the static performance test, the deflection value based on the maximum applied load showed stable behavior, and the crack width measured at the maximum applied load level was very small, satisfying the serviceability limit state. In addition, a natural frequency exceeding the natural frequency calculated during the design of the dynamic loading experiment was found, and a damping ratio that satisfies the current regulations was found to be secured.

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.

The Development of Improved Construction and Design Method on Continuous Preflex Girder Bridge (연속 프리플렉스 거더교의 개선된 시공법과 설계식의 개발)

  • Koo, Min Se;Park, Young Je;Kim, Hun Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.183-194
    • /
    • 2005
  • In the previous construction method of continuous preflex composite girder bridge, we raised the inner support, and cast slab concrete innegative moment section, then lowered it to introduce compressive force in the slab. There were a few problems in the process such as the time required in raising the support and the bending of the camber. Therefore, this paper represents an improved construction method of continuous preflex composite girder by only moving downward the inner and outer supports to figure out problems in previous construction method. This paper proposes a design formula to find a proper cross section of preflex girder.

An Effective Application of AE Technique for the Detection of Defects in Steel Girder Bridges (강판형교에서의 효율적인 결함검출을 위한 AE기법의 적용)

  • Kim, Sang Hyo;Yoon, Dong Jin;Lee, Sang Ho;Kim, Hyung Suk;Park, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.287-300
    • /
    • 1997
  • In this study, an effective application method of AE technique for the detection of fatigue crack in multi-girder steel bridges has been proposed. The applicability has been examined through the laboratory works with bridge model. The proposed analytical method which evaluates the remaining fatigue lives of structural members may improve the rational determination of the priority of inspection for structural members assuming to have fatigue cracks. Laboratory tests for the application of AE technique to steel girder bridges show that the frequency bands of traffic noise are in the range between 10 show that the frequency bands of traffic noise are in the range between 100~200 kHz and the AE signal raised from fatigue cracks is concentrated around 400~500 kHz. Therefore. R30 sensor is proved to be the most suitable for the detection of cracks in steel girder bridges. A linear proportionality between the crack propagation and the frequency of AE signals has been obtained. In addition, an economic and effective source location method for steel girder bridges was studied through experiments.

  • PDF

Assessment of the Degree of Fatigue Damage in Steel Plate-Girder Railway Bridges According to Span Length (지간장에 따른 강판형 철도교의 피로피해도 평가)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Nam, Wang-Hyone
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.313-320
    • /
    • 1999
  • Steel railway bridge gets vibration from moving load ; additionally, this kind of moving load is going to be a sufficient reason, which causes fatigue damage to steel railway bridge. Fatigue damage and stress curve were raised by moving load depends on span length in steel railway bridge. In other words, stress curve appears index regarding every axial load in short span, but self weight lets stress curve's change decrease in proportion to increasing span length. Thereby, we have studied that how the steel railway bridge appear fatigue damage in proportion to span length of steel railway bridge. Dynamic strain was measured in 4 steel plate-girder railway bridge during the trains was passing, which is located on the line of Kyoung-chun railway. And time history response analysis has been done in order to ensure actual survey. The results of this study show the decreased of the fatigue damage in steel railway bridge according to length of span. This paper ends is bases research of fatigue design in steel railway bridges according to span length.

  • PDF

Analytical Research on Dynamic Behavior of Steel Composite Lower Railway Bridge (강합성 하로 철도교의 동적거동에 대한 해석적 연구)

  • Jeong, Young-Do;Koh, Hyo-In;Kang, Yun-Suk;Eom, Gi-Ha;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • The existing middle-long span railway bridge has been mainly applied to steel box girder bridges. However, the steel box girder bridges have disadvantages in securing the space under the bridge, and the main girder is made of a thin plate box shape, resulting in a ringing noise due to the vibration. Many complaints about noise have been raised. For this reason, there is a need for the development of long railway bridges that can replace steel box girder bridges. In this paper, the characteristics of the steel composite railway bridge currently developed were introduced and a time history analysis was conducted using MIDAS Civil reflecting the speed of KTX load for 40m and 50m bridges. In addition, from the analysis results, the dynamic behavior of target bridges were verified and it was examined whether they meet the dynamic performance criteria proposed in the railway design standards. As a result, all of the bridges under review satisfied the dynamic safety criteria, however, in case of 40m of span, the vertical acceleration value was very large. In order to solve this problem, authors proposed the improvement plan and corrected the cross section to confirm that the vertical acceleration decreased.

A Study on the Vibration Analysis of a Deckhouse of Fishing Vessel (어선의 갑판실의 진동 해석법에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.3
    • /
    • pp.193-210
    • /
    • 1991
  • For the deckhouse or superstructure, attention is directed to the reduction of vibration from a human susceptibility point of view. The two basic requirements for obtaining a low vibration level in the accommodation are to ensure that excitation forces from propeller and/or main engine are small and to avoid resonance excitation of the hull and superstructure. In recent years increased attention has been directed towards the problems of vibration and noise in deckhouse, which have caused major problems with regard to the environmental quality in the living quarters for crews. Accordingly, in this paper, the characteristic of the vibration of deckhouse of fishing boat, of which the length/height ratio is also relatively high, are studied systematically with regard to the shape and modelling of deckhouse based on finite element method of 1-dimensional, 2-dimensional and 3-dimensional model. This study is divided into 4-part. 1st part is the global deckhouse vibration, 2nd part is the local deckhouse vibration, 3rd part consists of the estimation for stiffness of foundational support and 4th part is the application to TUNA LONG LINER of 416 ton class. For the global vibration analysis, the severity of the vibration depends on the longitudinal shear and bending stiffness of the deckhouse, on the vertical deckhouse support(fore, aft and sides). However, even if the design is technically sound, vibration problems may arise due to vertical or longitudinal hull girder or afterbody resonances. Author applied the method of this study to the analysis of, deep-sea fishing vessel of G.T. 416 ton class with relatively low height and long deckhouse, and investigated the vibrational characteristic of the fishing vessel with earlier structural feature. According to this investigation, the vibration, response of above vessel was confirmed of which main hull and deckhouse behave as one body. It is at the bottom of vibrational trouble which a accommodation part of the fishing vessel is raised, that is the local vibration for side wall, fore-aft wall and deck plate of deckhouse rather than thief fect of fore-aft vibration of deckhouse for above fishing vessel. and the resonance of main hull, deckhouse and driving system such as the main engine, propeller in exciting source is mainly brought up as the trouble.

  • PDF