• Title/Summary/Keyword: Rainwater use system

Search Result 42, Processing Time 0.029 seconds

Evaluation of Stored Rainwater Quality at Galmoe Middle School Rainwater Harvesting System (갈뫼중학교 빗물이용시설에서의 저장 빗물수질평가)

  • Han, Moo-Young;Lee, Soon-Jai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • One of the major obstacles confronted in promoting the rainwater harvesting is the concerns of acid rain and heavy metals. Although there are many data concerning the quality of rainwater precipitation for the study of acid rain, the study on the quality of stored rainwater has been limited. In this study, we monitored the quality of stored rainwater at Galmoe middle school, where a rainwater harvesting system is installed and in use for more than two years. We measured water quality parameters such as pH, Electro Conductivity(EC), Dissolved Oxygen(DO), and some metals (aluminium (Al), chromium(Cr), manganese(Mn), zinc(Zn), copper(Cu), arsenic(As), cadmium(Cd), lead(Pb)). The monitoring period was during one year from September 9th 2003 to August 5th 2004. It was observed that the average pH of stored rainwater is neutral. DO is similar to tap water and EC is lower than tap water. Metal Concentrations are within the concentration specified in Drinking Water Quality Standard. Overall, the stored rainwater quality is good enough for sundry use and there's no threat of acid rain and air pollution, if the rainwater harvesting system is well designed and maintained.

A comparative study of design guidelines for the decentralized rainwater management of apartment house (분산식 빗물관리를 위한 공동주택 외부공간 설계지침 연구)

  • Moon, Soo-young;Kim, Hyeon-soo;Lee, Keon-ho;Jang, Dae-hee
    • KIEAE Journal
    • /
    • v.6 no.3
    • /
    • pp.3-10
    • /
    • 2006
  • As environmental problems and water-shortage phenomenon become a global issue, many states look for the effective method to use water resources. So, decentralized rainwater management is recognized as a new water management system that rainwater can be infiltrated and used on-site. But it is little difficult to build a park, lake, and forest for evaporating rainwater in city because the land price of city is very high. In order to build an excellent infiltration system for a dwelling and a park in Korea, KICT has developed Linear infiltration system. This infiltration system is consist of first flush treatment, storage and infiltration, overflow control system. These elements are connected closely and working as a combined system. A storm sewer can be changed by the linear infiltration system. This study is to make design guideline using Linear infiltration system in apartment house. So ATV-DVWK-M13, FLL and present condition of Korean rainwater system were analyzed and the guidelines direction were set up. Through this study, a foundation is prepared to build the decentralized rainwater management of apartment house.

Design Technique of Rainwater Utilizing System (우수이용 시스템의 설계기법)

  • Jeon, In-Bae;Song, Si-Hun;Ji, Hong-Gi;Lee, Sun-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.587-596
    • /
    • 2001
  • The purpose of this study is to improve inefficient use of rainwater in island area where it uses rainwater to supply the domestic water and to propose rainwater utilizing system that is most appropriate to the characteristics of precipitation in Korea. To accomplish these purposes, Cheju island was chosen as a study area and the design for the roof area and tank size of rainwater utilizing system was based on the result of the relationship between the actual precipitation and domestic water data which was used in the analysis by run theory to use run theory. Since the result of the analysis indicated that the designed rainwater catchment system was operated stably in Cheju island, the same result is expected in other island too. Therefore, if this system is executed together with the roof rehabilitation work of island area, it will bring positive effects on broth the improvement of residental environment and the security of domestic water.

  • PDF

A Study on Quantity and Quality of Collected Rainwater by Collected Materials (우수 이용을 위한 포집재료별 포집수량과 수질에 관한 연구)

  • Lee, Young-Bok;Lee, Seung-Keun;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • In this study, quantity and quality of collected rainwater by sand, gravel, soil, lawn and concrete surface, as collection materials were investigated and Rainwater Collection Prediction Model was developed to predict the amount of collected rainwater. The quantity of collected rainwater in concrete surface, gravel, sand, soil and lawn collection system was 1,067L(93.2%), 1,006L(87.8%), 902L(78.8%), 800L(69.9%), 788.5L(68.8%) for 8 months period, respectively. The average turbidity of collected rainwater in concrete surface, gravel, sand, soil and lawn collection system was 3.2NTU, 2.2NTU, 1.9NTU, 1.7NTU, 1.5NTU for 8 months period, respectively. For sand collection material, predicted amount by the Model and actual collected amount were 931.5L and 902L, which were very closed. For gravel collection material, predicted amount by Model and actual collected amount were 1,028.21. and 1,006L, which were very closed. To simulate the optimal rainwater storage volume, the rainfall and evaporation data in Dae-jeon city were used. For sand collection system with 30m2 area, the maximum storage volume was $17m^3$ and 62% of the year was secured for use of 240L/day.

Rainwater Harvesting System as an Alternative Water Source

  • Kim, Phil-S.;Yoo, Kyung-H.;Kim, Sun-Joo;Lee, Nam-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.524-528
    • /
    • 2009
  • The objectives of this study were to install RCR systems at a typical single family house and a school in Alabama, and evaluate the feasibility and efficiency of using the RCR systems for water harvesting in Alabama. The RCR systemswere equipped with a control system and a CR10X data logger to monitor the system operation and to collect data on precipitation, temperature, overflow, water depth in the storage tank and daily uses of toilet flushing. Daily average water use of the home for toilet flushing was 95 liter and 2100 liter was used at the school during the school days. Rainwater harvesting efficiency was 83.3 and 89 percent and RCR use efficiency was 18 and 98 percent from the home and the school, respectively. A computer program was developed to estimate potential effectiveness of RCR systems. From the analysis result with 10 years rainfall data, a total of 67,000 liters of rainwater could be harvested for domestic uses from a typical single family house which supplies 190 liters per day.

  • PDF

A Study on the Rainwater Quality Monitoring and the Improvement, Collection and Storage System (빗물 집수 및 저장 시스템 개선과 수질 분석 모니터링)

  • Kim, Chul-Kyung
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.353-362
    • /
    • 2011
  • In our nature, the utilization of rainwater is essential for healthy water recirculation. This is one of the solutions of the increment of impermeability surface according to the development of new cities; this study of the improvement of rainwater quality has been carried on through the improvement of collecting and restoring system of rainwater. The southwestern region of Daejeon City, the rainwater coefficient of run off was 0.40 and this number had computed to 0.59 after the development. After filtration of rainwater, the heavy metal (Cu, As, Cr, Fe, Mn) contents level were lower than underground water. Moreover, collected rainwater showed better quality than underground water in following criteria; hardness, permanganate consumption quality, chloride, evaporation residue, sulfates and nitrate nitrogen. This water quality met the gray water quality standards. The rainwater quality was still suitable to use as bathroom flushing and gardening after 100 days of storage. This study proved that modification (installation of cover with gutter to existing rainwater collection system, proper filtering, and installation of underground storage tank) of collection system could improve quality of water and maintain this approximately 100 days.

A case study about exterior space design of apartments using Linear infiltration system (선형침투시스템의 공동주택 외부공간 적용 방안 연구)

  • Moon, Soo-young;Kim, Hyeon-soo;Jang, Dae-hee;Lee, Keon-ho
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.9-15
    • /
    • 2007
  • As environmental problems and water-shortage phenomenon become a global issue, many states look for the effective method to use water resources. So, decentralized rainwater management is recognized as a new water management system that rainwater can be infiltrated and used on-site. But it is little difficult to build a park, lake, and forest for evaporating rainwater in city because the land price of city is very high. In order to build an excellent infiltration system for a dwelling and a park in Korea, KICT has developed Linear infiltration system. This infiltration system is consist of first flush treatment, storage and infiltration, overflow control system. These elements are connected closely and working as a combined system. A storm sewer can be changed by the linear infiltration system. This study is to show real application idea about Linear infiltration system with improving some detail in apartments. For this purpose, we devide application idea into the artificial ground and the natural ground and each ground type, suggest a method to cooperate with the other landscape and linear infiltration system. Through this study, we came to recognize a recognition difference of an expert and a commoner about decentralized rainwater management.

A Study on Rainwater Utilization for Environmental Friendly Housing Complex Plan in Korea and Foreign Country (친환경적 단지조성을 위한 국내외 우수이용사례 및 적용방안에 관한 연구)

  • Cho, Kyung-Min;Lee, Tae-Goo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.195-200
    • /
    • 2003
  • The purpose of this study is to establish the rainwater Utilization for the housing complex through the using rainwater, infiltration and detention. This study focused on the following items. 1) Legal basic conditions for the rainwater utilization in Germany 2) Case study on the rainwater management with examples. As the results of this study, it is necessary to implement these rainwater management system in laws, legal norms and technical regulation.

  • PDF

Evaluation of Rainwater Utilization for Miscellaneous Water Demands in Different Types of Buildings Using Geographic Information System

  • Kim, Jinyoung;An, Kyoungjin;Furumai, Hiroaki
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This study is an attempt to quantify rainwater utilization and miscellaneous water demand in Tokyo's 23 special wards, the core of the urban area in Tokyo, Japan, in order to elucidate the potential of further rainwater utilization. The rainwater utilization for miscellaneous appropriate water demands, including toilet flushing, air conditioning, and garden irrigation, were calculated for six different types of building: residential house, office, department store, supermarket, restaurant, and accommodation. Miscellaneous water demands in these different types of building were expressed in terms of equivalent rainfall of 767, 1,133, 3,318, 1,887, 16,574, and 2,227 (mm/yr), respectively, compared with 1,528 mm of Tokyo's average annual precipitation. Building types, numbers and its height were considered in this study area using geographic information system data to quantify miscellaneous water demands and the amount of rainwater utilization in each ward. Area precipitation-demand ratio was used to measure rainwater utilization potential for miscellaneous water demands. Office and commercial areas, such as Chiyoda ward, showed rainwater utilization potentials of <0.3, which was relatively low compared to those wards where many residential houses are located. This is attributed to the relatively high miscellaneous water demand. In light of rainwater utilization based on building level, the introduction of rainwater storage mechanisms with a storage depth of 50 mm for six different types of buildings was considered, and calculated as rainfall of 573, 679, 819, 766, 930, and 787 (mm), respectively. Total rainwater utilization using such storage facilities in each building from 23 wards resulted in the retention of 102,760,000 $m^3$ of water for use in miscellaneous applications annually, and this volume corresponded to 26.3% of annual miscellaneous water demand.

Rainwater for Water Scarcity Management: An Experience of Woldia University (Ethiopia)

  • ANDAVAR, Venkatesh;ALI, Bayad Jamal;ALI, Sazan Ahmed
    • Asian Journal of Business Environment
    • /
    • v.10 no.4
    • /
    • pp.29-34
    • /
    • 2020
  • Purpose: Town of Woldia, a semi-arid region in the Northern Wollo region of Ethiopia, faces water supply shortage in general, though the town possesses a running stream of clean water throughout the year. This study is aimed at analyzing the possibility of using rainwater for water scarcity and non-potable water needs of the Woldia University. A careful study and analysis have been made to assess the feasibility of using rainwater in place of the tap water supply. Research design and methodology: This study was done inside the main campus of Woldia University located in Woldia town. The runoff water from the roof of buildings was studied, by the time of rainfall in the town. Also, the budget needed for implementing a rainwater harvesting system was calculated. Results: The findings of the study clearly indicates that the requirements of the water to use for flushing, cleaning, and washing toilets in the administrative buildings and classrooms can be satisfied by using rainwater as an alternative to tap water. Conclusion: Based on the results the study finds it is benefitable for the Woldia University to install the rainwater harvesting system at the earliest to solve the water problems prevailing in the current situation.