• Title/Summary/Keyword: Rainwater harvesting

Search Result 59, Processing Time 0.027 seconds

Analysis on the Potentiality of Domestic Rainwater Harvesting in Metro Manila (마닐라 지역의 가정용 우수저류시설 잠재가용성 분석)

  • Felix, Micah Lourdes A.;Maniquiz, Marla C.;Seo, Sung-Ho;Kim, Lee-Hyung;Jeong, Sang-Man
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.633-641
    • /
    • 2011
  • The Philippines is known for its abundant water resources such as the rainfall, where it has a mean annual rainfall range from 965 to 4,100mm. Due to the rapid urbanization of the country, the population in Metro Manila has been continuously increasing hence, the demand for a potable water supply also increases. To mitigate the scarcity of potable water supply, utilization of the water resources should be practiced. Rainwater harvesting is one way to utilize the rainfall runoff. This study analyzedthe potentiality of the rainwater harvesting on residential areas in Metro Manila. A water balance method based spreadsheet was used with input parameters including daily rainfall, catchment area, runoff coefficient, population and the water demand. The efficiency of the domestic water tank was analyzedusing the three different climatic conditions (i.e., minimum, median andmaximum annual rainfalls) and three different types of toilets (i.e., inefficient, conventional and dual-flush toilets). Furthermore, the overflow volume was used to determine which size of rainwater storage was more appropriate for the study area. The results of the study showed that for the three types of rainfall years, only the conventional and dual-flush toilets were suitable for the utilization of rainwater harvesting. The utilization of the $60m^3$ storage tank was sufficient for supplying the demandsof the 90 houses only for a small period of time, 3 months. Based from this study, to fully sustain the long-term water demand of the houses, the enlargement of the tank size having a capacity of 1,100 to $2,500m^3$ is ideal.

Evaluation of Tank Capacity of Rainwater Harvesting System to Secure Economic Feasibility and Sensitivity Analysis (경제성 확보를 위한 빗물이용시설의 규모 산정 및 민감도 분석)

  • Mun, Jung-Soo;Kim, Ha-Na;Park, Jong-Bin;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • Rainwater harvesting systems (RWHS), one of measures for on site rainwater management, have been promoted by laws, regulations and guidelines and have been increased. However, more evaluation of economic feasibility on RWHS is still needed due to seasonal imbalance of rainfall and little experiences and analysis on design and operation of RWHS. In this study, we investigated tank capacity of RWHS to secure economic validity considering catchment area and water demand, which is affected by building scale. Moreover, sensitivity analysis was performed to examine the effect of design factors, cost items and increase rate of water service charge on economic feasibility. The BCR (benefit cost ratio) is proportional to the increase in tank capacity. It is increased steeply in small tank capacity due to the effect of cost and, since then, gently in middle and large tank capacity. In case of 0.05 in the rate of tank volume to catchment area and 0.005 in water demand to catchment area, BCR was over one from the tank capacity of 160 $m^{3}$ taking into account of private benefits and from the tank capacity of 100 $m^{3}$ taking into account of private and public benefits. Sensitivity analysis shows that increase of water demand can improve BCR values with little cost so that it is needed to extend application of rainwater use and select a proper range of design factor. Decrease of construction and maintenance cost reduced the tank volume to secure economic validity. Finally, increase rate of water service charge had considerable impact on economic feasibility.

Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting (PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가)

  • Lee, Taeseop;Kim, Youngjin;Ham, Sangwoo;Hong, Seungkwan;Park, Byungjoo;Shin, Yongil;Jung, Insik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2012
  • The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.

VALUATION OF A MULTI-STAGE RAINWATER HARVESTING TANK CONSTRUCTION USING A REAL OPTION APPROACH

  • Byungil Kim;Hyoungkwan Kim;SangHyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.386-389
    • /
    • 2013
  • Under climate change and urbanization, rainwater harvesting (RWH) systems are emerging as an alternative source of water supply because of growing concern about water sustainability. RWH systems can satisfy the various watering needs and provide the environmental benefits of lessening the damages from flood, drought, and runoff. The economic success of a RWH system is vitally concerned with the determination of the design capacity of storage tank to be built in the system. The design capacity is determined by the factors of average annual rainfall, period of water scarcity, and water price during the whole life-cycles. Despite the high uncertainties inherent in these factors, the current engineering design of RWH system construction often assumes that storage tanks should be built all at once. This assumption implicitly ignores the managerial flexibility in responds to the future as new information comes out-the right to build storage tanks stage by stage depending on the evolution of demand. This study evaluates the value of a multistage storage tank construction using a real option approach. A case study involving a typical RWH system construction in Jeonju, the Republic of Korea is conducted. The managerial flexibility obtained from the real option perspective allows engineers to develop investment strategies to better cope with the issue of water sustainability.

  • PDF

Benefit of the Drinking Water Supply System in Office Building by Rainwater Harvesting: A Demo Project in Hanoi, Vietnam

  • Dao, Anh-Dzung;Nguyen, Viet-Anh;Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Vietnam is a developing country with the rate around 5%-6% per year, especially in urban areas. Rapidly developed urban areas lead to stress for infrastructure and the water supply is also stressed. In Hanoi city, total water capacity from the manufactories is around one million cubic meters per day and almost the entire main water source is groundwater but it is not enough to supply all of Hanoi's people, especially in the summer. A demo project is implemented in Hanoi University of Civil Engineering (HUCE) to produce drinking water by using the rainwater and membrane system and supply for people. In this project, rainwater is collected on the rooftop of the lecture building with an area of around $500m^2$ and $100m^3$ volumetric rainwater tanks. Afterwards, the rainwater is treated by the micro-membrane system and supplied to the tap water. Total cost for construction, technology and operation in the first year is around USD 48,558. In the long-term (15 yr) if HUCE invests in the same system, with $20m^3$ volumetric storage tank, it can provide drinking water for 500 staffs in every year. The cost of investment and operation for this system is lower than 30% compared to buying bottled water with the price USD 1.8/bottle. The drinking water parameters after treatment are pH, 7.3-7.75; turbidity, 0.6-0.8 NUT; total dissolved solids, 60-89 mg/L; coliform, 0; heavy metal similar with water quality in the bottle water in Vietnam.

Capacity determination for a rainfall harvesting unit using an optimization method (최적화 기법을 이용한 빗물이용시설의 저류 용량 결정)

  • Jin, Youngkyu;Kang, Taeuk;Lee, Sangho;Jeong, Taekmun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.681-690
    • /
    • 2020
  • Generally, the design capacity of the rainwater harvesting unit is determined by trial and error method that is repeatedly calculating various analysis scenarios with capacity, reliability, and rainwater utilization ratio, etc. This method not only takes a lot of time to analyze but also involves a lot of calculations, so analysis errors may occur. In order to solve the problem, this study suggested a way to directly determine the minimum capacity to meet arbitrary target reliabilities using the global optimization method. The method was implemented by simulation model with particle swarm optimization (PSO) algorithms using Python language. The pyswarm that is provided as an open-source of python was used as optimization method, that can explore global optimum, and consider constraints. In this study, the developed program was applied to the design data for the rainwater harvesting constructed in Cheongna district 1 in Incheon to verify the efficiency, stability, and accuracy of the analysis. The method of determining the capacity of the rainwater harvesting presented in this study is considered to be of practical value because it can improve the current level of analytical technology.

Estimation of Storage Capacity for Sustainable Rainwater Harvesting System with Probability Distribution (확률분포를 이용한 지속가능한 빗물이용시설의 저류용량 산정)

  • Kang, Won Gu;Chung, Eun-Sung;Lee, Kil Seong;Oh, Jin-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.740-746
    • /
    • 2010
  • Rainwater has been used in many countries as a way of minimizing water availability problems. Rainwater harvesting system (RHS) has been successfully implemented as alternative water supply sources even in Korea. Although RHS is an effective alternative to water supply, its efficiency is often heavily influenced by temporal distribution of rainfall. Since natural precipitation is a random process and has probabilistic characteristics, it will be more appropriate to describe these probabilistic features of rainfall and its relationship with design storage capacity as well as supply deficit of RHS. This study presents the methodology to establish the relationships between storage capacities and deficit rates using probability distributions. In this study, the real three-story building was considered and nine scenaries were developed because the daily water usage pattern of the study one was not identified. GEV, Gumbel and the generalized logistic distribution ware selected according to the results of Kolmogorov-Smirnov test and Chi-Squared test. As a result, a set of curves describing the relationships under different exceedance probabilities were generated as references to RHS storage design. In case of the study building, the deficit rate becomes larger as return period increases and will not increase any more if the storage capacity becomes the appropriate quantity. The uncertainties between design storage and the deficit can be more understood through this study on the probabilistic relationships between storage capacities and deficit rates.

Application of Rainwater Harvesting System Reliability Model Based on Non-parametric Stochastic Daily Rainfall Generator to Haundae District of Busan (비모수적 추계학적 일 강우 발생기 기반의 빗물이용시설 신뢰도 평가모형의 부산광역시 해운대 신시가지 적용)

  • Choi, ChiHyun;Park, MooJong;Baek, ChunWoo;Kim, SangDan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.634-645
    • /
    • 2011
  • A newly developed rainwater harvesting (RWH) system reliability model is evaluated for roof area of buildings in Haeundae District of Busan. RWH system is used to supply water for toilet flushing, back garden irrigation, and air cooling. This model is portable because it is based on a non-parametric precipitation generation algorithm using a markov chain. Precipitation occurrence is simulated using transition probabilities derived for each day of the year based on the historical probability of wet and dry day state changes. Precipitation amounts are selected from a matrix of historical values within a moving 30 day window that is centered on the target day. Then, the reliability of RWH system is determined for catchment area and tank volume ranges using synthetic precipitation data. As a result, the synthetic rainfall data well reproduced the characteristics of precipitation in Busan. Also the reliabilities of RWH system for each of demands were computed to high values. Furthermore, for study area using the RWH system, reduction efficiencies for rooftop runoff inputs to the sewer system and potable water demand are evaluated for 23%, 53%, respectively.

Analysis of Filtration Characteristics of Submerged Microfiltration Membranes for Rainwater Filtration (빗물여과를 위한 침지식 정밀여과막의 여과특성 해석)

  • Cho, Hyeongrak;Jung, Jungwoo;Sohn, Jinsik;Lee, Sangho;Chae, Soo Kwon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Rainwater harvesting is a process by which rainwater collected from rooftop or other catchment is purified so that the water can be directly or indirectly used by human beings for beneficial uses. As rainwater is increasingly considered for high quality purposes, membranes have gained an important place in rainwater treatment. It has advantages such as the production of high quality water, small footprint, and affordable energy consumption. Nevertheless, membrane fouling is regarded as a serious problem similar to the cases of water treatment and wastewater reclamation. In this study, we applied microfiltration (MF) membranes for rainwater treatment. In addition, a low pressure ultraviolet (UV) process was also use as a pretreatment to control notonly. To quantify the effect of UV on organic matters, both total organic carbon (TOC) and UV absorbance (UVA) were measured. Moreover, the effect of UV pretreatment on membrane fouling was investigated. Experimental results indicated that the pretreatment of membranes using LPUV was effective to control fouling of MF membranes only when the rainwater was contaminated by algae. This was attributed the reduction and modification of organics after UV treatments. It is likely that the UV/MF process is a promising option for water treatment in decentralized water treatment such as micro water grid systems.