Development of PTFE Membrane Bio-reactor (MBR) for Integrating Wastewater Reclamation and Rainwater Harvesting

PTFE막을 이용한 빗물 중수 통합형 MBR 시스템 개발 및 성능 평가

  • Lee, Taeseop (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Youngjin (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Ham, Sangwoo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Seungkwan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Park, Byungjoo (Synopex, Water Environmental Technical Research Institute) ;
  • Shin, Yongil (Synopex, Water Environmental Technical Research Institute) ;
  • Jung, Insik (Synopex, Water Environmental Technical Research Institute)
  • 이태섭 (고려대학교 건축사회환경공학부) ;
  • 김영진 (고려대학교 건축사회환경공학부) ;
  • 함상우 (고려대학교 건축사회환경공학부) ;
  • 홍승관 (고려대학교 건축사회환경공학부) ;
  • 박병주 ((주)시노펙스 물환경기술연구소) ;
  • 신용일 ((주)시노펙스 물환경기술연구소) ;
  • 정인식 ((주)시노펙스 물환경기술연구소)
  • Published : 2012.03.30

Abstract

The surface characteristics and performance of PTFE (polytetrafluoroethylene) hollow fiber membranes have been systematically investigated at lab- and pilot-scale to assess their application to membrane-bioreactor, particularly for integrating wastewater reclamation and rainwater harvesting. The PTFE membrane expressed some surface features, such as hydrophobicity, which might enhance membrane fouling. However, lab-scale performance and cleaning experiments under various conditions demonstrated that the PTFE membrane could produce the desirable water flux with good cleaning efficiency, implying easy operation and maintenance due to superior chemical resistance of PTFE membranes. Most of effluent water qualities were met with Korean standard for discharge and reuse, except color. Color level was further reduced by blending with rainwater at 75:25 ratio. Based on the lab-scale experimental results, the pilot plant was designed and operated. Pilot operation clearly showed sTable performance with satisfactory water quality, suggesting that PTFE membrane could be applied for decentralized MBR integrated with rainwater use.

Keywords

References

  1. 국토해양부(2010). http://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxMain.jsp?idx_cd=1214/.
  2. 이의종, 김관엽, 권진섭, 김영훈, 이용수, 이창하, 전민정, 김형수, 김정래, 정진호(2011). PTFE재질의 평판형 분리막과 인제거를 위해 Alum 주입을 적용한 고플럭스 MBR 시스템에 관한 연구, 상하수도학회지, 25(1), pp. 95-106.
  3. 이태섭, 이상엽, 이주희, 홍승관(2009). 중공사막 외부표면의 제타전위 측정방법 고찰, 상하수도학회지, 23(3), pp. 353-362.
  4. 최재훈, 김형수(2008). 침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향, 대한환경공학회지, 30(1), pp. 31-36.
  5. Bohner, H. F. and Bradley, R. L. (1992). Effective Cleaning and Sanitizing of Polysulfone Ultrafiltration Membrane Systems, Journal of Dairy Science, 75(3), pp. 718-724. https://doi.org/10.3168/jds.S0022-0302(92)77808-4
  6. Chang, I. and Kim, S. (2005). Wastewater Treatment Using Membrane Filtration-effect of Biosolids Concentration on Cake Resistance, Process Biochemistry, 40(3-4), pp. 1307-1314. https://doi.org/10.1016/j.procbio.2004.06.019
  7. Chong, R., Jelen, P., and Wong, W. (1985). The Effect of Cleaning Agents on a Noncellulosic Ultrafiltration Membrane, Seperation Science Technology, 20(5-6), pp. 393-402. https://doi.org/10.1080/01496398508060689
  8. Davis, M. L. and Masten, S. J. (2004). Principles of Environmental Engineering and Science, Mc Graw Hill, Singapore, pp. 1-704.
  9. Frake, R., Lehmann, D., and Kunze, K. (2007). Tribological Behavior of New Chemically Bonded PTFE Polyamide Compounds, Wear : An International Journal on the Science and Technology of Friction, Lubrication on Wear, 262(3/4), pp. 242-252.
  10. Guglielmi, G., Chiarani, D., Judd, S. J., and Andreottola, G. (2007). Flux Criticality and Sustainability in a Hollow Fibre Submerged Membrane Bioreactor for Municipal Wastewater Treatment, Journal of Membrane Science, 289(1-2), pp. 241-289. https://doi.org/10.1016/j.memsci.2006.12.004
  11. Liu, F., Hashim, N. A., Liu, Y., Moghareh Abed, M. R., and Li, K. (2011). Progress in the Production and Modification of PVDF Membranes, Journal of Membrane Science, 375(1-2), pp. 1-27. https://doi.org/10.1016/j.memsci.2011.03.014
  12. Mankad, A. and Taqsuwan, S. (2011). Review of Socio-economic Drivers of Community Acceptance and Adoption of Decentralised Water Systems, Journal of Environmental Management, 92(3), pp. 380-391. https://doi.org/10.1016/j.jenvman.2010.10.037
  13. Meng, F., Chae, S. R., Drews, A., Kraume, M., Shin, H. S., and Yang, F. (2009). Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material, Water Research, 43(6), pp. 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044
  14. Psoch, C. and Schiewer, S. (2006). Anti-fouling Application of Air Sparging and Backflushing for MBR, Journal of Membrane Science, 283(1-2), pp. 273-280. https://doi.org/10.1016/j.memsci.2006.06.042
  15. Ren, N., Chen, Z., Wang, A., and Hu, D. (2005). Removal of Organic Pollutants and Analysis of MLSS-COD Removal Relationship at Different HRTs in a Submerged Membrane Bioreactor, International Biodeterioration & Biodegradation, 55(4), pp. 279-284 https://doi.org/10.1016/j.ibiod.2005.03.003
  16. Rygaard, M., Binning, P. J., and Albrechtsen, H. (2011). Increasing Urban Water Self-sufficiency: New Era, New Challenges, Journal of Environmental Management, 92(1), pp. 185-194. https://doi.org/10.1016/j.jenvman.2010.09.009
  17. Varbanets, M. P., Zurbrugg, C., Swartz, C., and Pronk, W. (2009). Decentralized Systems for PoTable Water and the Potential of Membrane Technology, Water Research, 43(2), pp. 245-265. https://doi.org/10.1016/j.watres.2008.10.030
  18. Wu, J. L., Le-Clech, P., Stuetz, R. M., Fane, A. G., and Chen, V. (2008). Effects of Relaxation and Backwashing Conditions on Fouling in Membrane Bioreactor, Journal of Membrane Science, 324(1-2), pp. 26-32. https://doi.org/10.1016/j.memsci.2008.06.057
  19. Xing, C., Wen, X., Qian, Y., and Tardieu, E. (2001). Micro Filtration Membrane Coupled Bioreactor for Urban Wastewater Reclamation, Desalination, 141(1), pp. 67-73.