• Title/Summary/Keyword: Rainfall-runoff simulation

Search Result 343, Processing Time 0.024 seconds

Accuracy evaluation of threshold rainfall impacting pedestrian using ROC (ROC를 이용한 보행에 영향을 미치는 한계강우량의 정확도 평가)

  • Choo, Kyungsu;Kang, Dongho;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1173-1181
    • /
    • 2020
  • Recently, as local heavy rains occur frequently in a short period of time, economic and social impacts are increasing beyond the simple primary damage. In advanced meteorologically advanced countries, realistic and reliable impact forecasts are conducted by analyzing socio-economic impacts, not information transmission as simple weather forecasts. In this paper, the degree of flooding was derived using the Spatial Runoff Assessment Tool (S-RAT) and FLO-2D models to calculate the threshold rainfall that can affect human walking, and the threshold rainfall of the concept of Grid to Grid (G2G) was calculated. In addition, although it was used a lot in the medical field in the past, a quantitative accuracy analysis was performed through the ROC analysis technique, which is widely used in natural phenomena such as drought or flood and machine learning. As a result of the analysis, the results of the time period similar to that of the actual and simulated immersion were obtained, and as a result of the ROC (Receiver Operating Characteristic) curve, the adequacy of the fair stage was secured with more than 0.7.

Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City- (도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로-)

  • Lee, Jae-Yong;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.

The Applicability of KIMSTORM for Flood Simulation Using Conditional Merging Method and Radar Rain Data (조건부 합성기법과 레이더 강우자료를 이용한 분포형 강우유출모형 KIMSTORM의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.136-136
    • /
    • 2017
  • 본 연구의 목적은 이중편파 레이더 강우자료와 현재 실무에서 널이 이용되고 있는 레이더 강우보정 기법 적용에 따른 격자기반 분포형 강우-유출 모형인 KIMSTORM (KIneMatic wave STOrm Runoff Model)을 이용하여 유출해석을 수행하여 보정된 레이더 강우자료를 적용한 분포형 수문모형의 효율성을 검토하는데 있다. 남강댐 유역($2,293km^2$)을 대상으로 2014년 8월 태풍 이벤트(나크리), 2016년 10월 태풍 이벤트(차바)에 대하여 비슬산 레이더 강우자료를 사용하였다. 강우자료의 보정은 21개 지점 강우와 레이더 강우를 이용하여 조건부 합성 보정기법을 이용하였으며, 누적 강우량 그리고 면적 강우량 모두 관측치를 잘 재현함을 확인 할 수 있었다. $R^2$(coefficient of determination), ME (model efficiency), VCI (volume conservation index)를 이용하여 적용성을 평가하였다. 2016년 태풍 차바 이벤트에서의 유출 모형의 보정결과 조건부 합성 보정기법을 적용하기전 $R^2$, ME는 각각 0.75, 0.13으로 나타났고 조건부 합성 보정기법을 적용하였을 경우 각각 0.87, 0.82로 유출량 정확도가 크게 향상됨을 나타냈다. 다양한 국지성 집중호우 이벤트는 레이더 강우자료의 과대 및 과소추정을 유발하는 오차의 원인으로 조건부 합성 보정기법은 이러한 오차를 줄여 강우-유출 모형의 유출분석 결과 비교시 첨두유량 및 정량적인 면에서 실측 유량과 가깝게 모의되는 결과를 나타냈다.

  • PDF

Bayesian parameter estimation of Clark unit hydrograph using multiple rainfall-runoff data (다중 강우유출자료를 이용한 Clark 단위도의 Bayesian 매개변수 추정)

  • Kim, Jin-Young;Kwon, Duk-Soon;Bae, Deg-Hyo;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.383-393
    • /
    • 2020
  • The main objective of this study is to provide a robust model for estimating parameters of the Clark unit hydrograph (UH) using the observed rainfall-runoff data in the Soyangang dam basin. In general, HEC-1 and HEC-HMS models, developed by the Hydrologic Engineering Center, have been widely used to optimize the parameters in Korea. However, these models are heavily reliant on the objective function and sample size during the optimization process. Moreover, the optimization process is carried out on the basis of single rainfall-runoff data, and the process is repeated for other events. Their averaged values over different parameter sets are usually used for practical purposes, leading to difficulties in the accurate simulation of discharge. In this sense, this paper proposed a hierarchical Bayesian model for estimating parameters of the Clark UH model. The proposed model clearly showed better performance in terms of Bayesian inference criterion (BIC). Furthermore, the result of this study reveals that the proposed model can also be applied to different hydrologic fields such as dam design and design flood estimation, including parameter estimation for the probable maximum flood (PMF).

Impact of the Geochemical Characteristics and Potential Contaminants Source of Surrounding Soil on Contamination of a Reservoir in an Island (II) - Appraisal of flow categorized by Incursion Using Rainfall-Runoff Model - (주변토양의 지구화학적 특성과 잠재적 오염원이 도서지역 저수지의 오염부하에 미치는 영향(II) - 강우 유출 모형을 이용한 유입경로별 유출량 평가 -)

  • Park, Sun-Hwan;Park, Wan-Sub;Jun, Young-Bong;Kim, Chang-Gyun;Kim, Sung-Gou;Kang, Seon-Hong;Chang, Yoon-Young;Jeong, Jeong-Ho;Jung, Jong-Ahm
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • This research aims to gain the result of assessment of inflow categorized by runoff path using DIROM (Daily Irrigation Reservoir Operation Model) for Baengnyeong-myeon reservior which was built for residents of Baengnyeong island to solve the shortage of drinking water and stable supply of domestic water. The simulation results of DIROM and actual hydrograph of the reservoir show very low correlation with geological characteristics. The simulation results by DIROM after adjusting with modified Tank III model which considers all outflow from Tank II model as interflow among 3 level tanks show good correlation of its regional runoff and inflow characteristics with $R^2$=0.9058. In the study area, diffluence of 37% of rain fall of the study year has been simulated, which shows low result compared to the average river runoff of national water resource. In addition, 34.5% of total inflow to the study reservoir is mainly interflow and baseflow among expected several channels.

Improvement of Mid-and Low-flow Estimation Using Variable Nonlinear Catchment Wetness Index (비선형 유역습윤지수를 이용한 평갈수기 유출모의개선)

  • Hyun, Sukhoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.779-789
    • /
    • 2016
  • The effective rainfall is calculated considering the soil moisture. It utilizes observed data directly in order to incorporate the soil moisture into the rainfall-runoff model, or it calculates indirectly within the model. The rainfall-runoff model, IHACRES, used in this study computes the catchment wetness index (CWI) first varying with temperature and utilize it for estimating precipitation loss. The nonlinear relationship between the CWI and the effective rainfall in the Hapcheondam watershed was derived and utilized for the long-term runoff calculation. The effects of variable and constant CWI during calibration and validation were suggested by flow regime. The results show the variable CWI is generally more effective than the constant CWI. The $R^2$ during high flow period shows relatively higher than the ones during normal or low flow period, but the difference between cases of the variable and constant CWI was insignificant. The results indicates that the high flow is relatively less sensitive to the evaporation and soil moisture associated with temperature. On the other hand, the variable CWI gives more desirable results during normal and low flow periods which means that it is crucial to incorporate evaporation and soil moisture depending on temperature into long-term continuous runoff simulation. The NSE tends to decrease during high flow period with high variability which could be natural because NSE index is largely influenced by outliers of underlying variable. Nevertheless overall NSE shows satisfactory range higher than 0.9. The utilization of variable CWI during normal and low flow period would improve the computation of long-term rainfall-runoff simulation.

Determination of operating offline detention reservoir considering system resilience (시스템 탄력성을 고려한 빗물저류조 운영수위 결정)

  • Lee, Eui Hoon;Lee, Yong Sik;Jung, Donghwi;Joo, Jin Gul;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.403-411
    • /
    • 2016
  • Recently, the number of occurrences of inundation and the severity of flood damage has increased rapidly as the frequency of localized heavy rainfall and the ratio of impervious area increased in urban areas. Most local governments focus on employing structural measures (e.g., the construction of detention reservoirs/pump stations, rehabilitation of drainage and sewer pipes) to prevent urban inundation. On the other hand, the effectiveness of implementing such structural measures is being dimished because there are already many inundation prevention facilities. The limitation of structural measures can be overcoming by employing non-structure measures, such as flood alerts and the operation of drainage facilities. This study suggests the pump operation rule (i.e., suggesting pump stop level) for a new detention reservoir operating method, which triggers the operation of a pump based on the water level at the monitoring node in urban drainage system. In the new reservoir operation, a total of 48 rainfall events are generated by the Huff distribution for determining the proper pump stop level. First, the generated rainfall events are distributed as frequencies, quartiles, and durations. The averaged system resilience value was determined to range from 1.2 m to 1.5 m is based on the rainfall-runoff simulation with rainfall generated by the Huff distribution. In this range, 1.2 m was identified considering the safety factor of 1.25 by the Standard on sewer facilities in 2011.

Application of two-term storage function method converted from kinematic wave method (운동파법의 변환에 의한 2항 저류함수법의 적용)

  • Kim, Chang Wan;Chegal, Sun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1057-1066
    • /
    • 2019
  • The storage function method is used as a flood prediction model for four flood control offices in Korea as a method to analyze the actual rainfall-runoff relationship with non-linearity. It is essential to accurately estimate the parameters of the storage function method for accurate runoff analysis. However, the parameters of the storage function method currently in use are estimated by the empirical formula developed by the limited hydrological analysis in 2012; therefore, they are somewhat inaccurate. The kinematic wave method is a method based on physical variables of watershed and channel and is widely used for rainfall-runoff analysis. By adopting the two-term storage function method by the conversion of the kinematic wave method, parameters can be estimated based on physical variables, which can increase the accuracy of runoff calculation. In this research, the reproducibility of the kinematic wave method by the two-term storage function method was investigated. It is very easy to estimate the parameters because equivalent roughness, which is an important physical variable in watershed runoff, can be easily obtained by using land use and land cover, and the physical variable of channel runoff can be easily obtained from the basic river planning report or topographic map. In addition, this research examined the applicability of the two-term storage function method to runoff simulation of Naechon Stream, a tributary of the Hongcheon River in the Han River basin. As a result, it is considered that more accurate runoff calculation results could be obtained than the existing one-term storage function method. It is expected that the utilization of the storage function method can be increased because the parameters can be easily estimated using physical variables even in unmeasured watersheds and channels.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -)

  • Jung, In Kyun;Lee, Mi Seon;Park, Jong Yoon;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.697-707
    • /
    • 2008
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.

Dam Failure and Unsteady Flow Analysis through Yeoncheon Dam Case(I) -Analysis of Dam Failure Time and Duration by Failure Scenarios and Unsteady Flow - (연천댐 사례를 통한 댐 파괴 부정류해석 및 하류 영향 검토(I) -댐 파괴 시나리오와 부정류 해석을 통한 지속시간 및 파괴시간 해석-)

  • Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1281-1293
    • /
    • 2008
  • This study aims at the estimation of dam failure time and dam failure scenario analysis of and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-HMS, DAMBRK-FLDWAV simulation model. As the result of the rainfall-runoff simulation, the lancet flood amount of the Yeoncheon Dam site was $10,324\;m^3/sec$ and the total outflow was $1,263.90\;million\;m^3$. For the dam failure time estimation, 13 scenarios were assumed including dam failure duration time and starting time, which reviewed to the runoff results. The simulation time was established with 30 minutes intervals between one o'clock to 4 o'clock in the morning on August 1, 1999 for the setup standard for each case of the dam failure time estimation, considering the arrival time of the flood, when the actually measured water level was sharply raising at Jeongok station area of the Yeoncheon Dam downstream, As results, dam failure arrival time could be estimated at 02:45 a.m., August 1st 1999 and duration time could be also 30 minutes. Those results and procedure could suggest how and when dam failure occurs and analyzes.