• 제목/요약/키워드: Rainfall range

검색결과 404건 처리시간 0.022초

ANALYSIS OF FLOW RESPONSE CHANCE ON A DAM CATCHMENT DUE TO GLOBAL WARMING

  • Shin, Sha-Chul;Koh, Deuk-Koo
    • 물과 미래
    • /
    • 제35권5호
    • /
    • pp.31-43
    • /
    • 2002
  • 본 연구에서는 온난화에 의한 하천유역의 수문응답(강우유출, 특히 일단위의 유황)의 변화양상을 수치실험을 통해 정량적으로 평가하였다. 이산화탄소 농도의 증가에 따른 온난화의 진행으로 야기되는 수문학적 평가는 많은 관측자료를 필요로 하며 이를 정량적으로 평가한다는 것은 대단히 어려운 일이다. 따라서 장래의 기후를 예측하는 수단으로서 적정한 시나리오를 상정하여 평하는 방법을 생각할 수 있다. 본 연구에서는 여러 가지 상정할 수 있는 시나리오 중 기온은 $0^{\circ}C$에서 $4.0^{\circ}C$까지 변화하며 강수량은 15%까지 증감할 수 있다는 시나리오를 상정하여 불확실성이 큰 지구온난화의 문제에 대하여 간단하면서 명확한 가정을 도입하였다. 따라서, 대상유역인 안동댐 유역에 대한 장래의 하천유량은 기후변화 시나리오에서 야기되는 강수량을 발생시켜 탱크모형에 의하여 일 유량을 모의 발생하게 된다. 본 연구에서는 2030년을 이산화탄소 농도가 배증되는 시점 ($2{\times}CO2$), 2010년, 2020년 및 2050년을 각각 ($1.5{\times}CO2$),($1.75{\times}CO2$) 및 ($2.5{\times}CO2$)로 설정하였으며, 이 시기에 대한 하천 유황의 해석 및 온난화가 발생되지 않았을 때와의 비교 검토를 실시하였다.

  • PDF

GIS기반 토사유실모델을 이용한 저수지 사면의 토사유실 영향 분석 (The Influence Analysis for Soil Loss in Reservoir Slant using GIS-based Soil Loss Model)

  • 이근상;박진혁;황의호;고덕구
    • 한국지리정보학회지
    • /
    • 제7권3호
    • /
    • pp.108-117
    • /
    • 2004
  • 임동 유역은 지질 및 토지피복 상태가 토사유실에 취약한 특성을 가지고 있어, 강우발생시 토사유입으로 호소내 수질오염에 큰 영향을 주고 있으며, 특히 이러한 호소내 수질문제의 원인으로 저수지 사변의 토사유실 가능성이 제기되고 있다. 본 연구에서는 저수지 사면에서 발생하는 토사유실 기여율을 평가하기 위해 최근 GIS 및 위성영상과의 연계가 가능한 RUSLE 모형을 선정하였으며 사면에서 발생하는 토사유실 정확도에 큰 영향을 주는 사연의 범위와 폭 그리고 사면상태를 DB로 구축하기 위해 현지조사를 실시하였다. 임동유역에 대한 토사유실량과 비교하여 저수지 사면에서 발생하는 토사유실량과의 영향을 분석한 결과 약 2.64%로 나타났다. 따라서 이러한 결과를 볼 때, 임동 유역의 토사유실량에 비해 저수지 사면의 토사유실 영향은 상대적으로 낮은 것으로 평가되었다.

  • PDF

해안지역 대기부유미립자상 물질의 특성에 관한 연구 (A Study on the Characteristics of Ambient Suspended Particulate Matter at Coastal Area, Kangwha)

  • 강공언;우상윤;강병욱;김희강
    • 한국환경보건학회지
    • /
    • 제20권4호
    • /
    • pp.1-9
    • /
    • 1994
  • In order to investigate the regional level of air pollutants at Kangwha island situated on the western coast in Korea, the suspended particulate matter samples were collected by using the low volume air sampler on ten interval from March 1992 to February 1993 and the mass concentration of suspended particulate matter (SPM) and the chemical composition of water-soluble major ionic components in SPM samples were measured. During the sampling period, the average concentration of SPM under diameter 10 $\mu$m was found to be 48 $\mu$g/m$^3$ (+ 12). The seasonal concentration of SPM was showed in order of spring>fall>winter>summer. It was considered that higher concentration on spring than other season was affected by the long-range transport of Yellow sand particulate from China continent and lower concentration on summer by the washout and rainout effect of large rainfall. The content of water-soluble component in SPM samples was founded to be about 31% (14.69 $\mu$g/m$^3$) and 65% was unknown or unanalyzed. The content of cationic component showed in order of NH$_4^+$ (44.6%)>Na$^+$ (21.2%)>K$^+$ (14.7%)>Ca$^{2+}$ (13.6%)>Mg$^{2+}$ (5.9 %) and the content of anionic component SO$_4^{2-}$ (62.5%)>NO$_3^-$ (22.3%)>Cl$^-$ (15.2%), respectively. This fact indicates that ammonium and sulfate ion of water-soluble component in SPM sample were dominant in this region. From the chemical composition of water-soluble component, the most of Na$^+$, Mg$^{2+}$ and Cl$^-$ were originated from seawater source but K$^+$, Ca$^{2+}$ and SO$_4^{2-}$ were originated from other non-marine source. The contribution of seasalt to the composition of precipitation was 23%.

  • PDF

침수기간이 배추의 생육, 생리적 반응 및 수량에 미치는 영향 (Influence of Waterlogging Period on the Growth, Physiological Responses, and Yield of Kimchi Cabbage)

  • 이상규;이희주;김성겸;최장선;박성태
    • 한국환경과학회지
    • /
    • 제25권4호
    • /
    • pp.535-542
    • /
    • 2016
  • This study was conducted to investigate effects of waterlogging on the growth, physiological responses, and yield of Kimchi cabbage. The growth of Kimchi cabbage with applied optimized air temperature (set to $20^{\circ}C$) was greater than those with high air temperature (set to $30^{\circ}C$) and the growth significantly decreased by severe waterlogging treatment. The net photosynthetic rate of outer leaves on one hour after waterlogging treatment was higher at 72 hours waterlogging treatment in $20^{\circ}C$ and lower at 24 hours of waterlogging treatment in $30^{\circ}C$. The root activity was decreased by the elevation of waterlogging periods in $20^{\circ}C$ treatment and lower by the short of waterlogging periods in $30^{\circ}C$ treatment. The ratio of formality with non-waterlogging treatment was approximately 64% under $20^{\circ}C$ air temperature and that of range was from 16 to 30% under $30^{\circ}C$. The yield under $20^{\circ}C$ showed higher than that under high air temperature. The non-waterlogging treatment in $20^{\circ}C$ had 4,463 kg/10a, which was the greatest among all treatments, while yields of non-waterlogging treatment at $30^{\circ}C$ were significantly low as 1,082 kg/10a. Results suggested that additional drainage work should be needed to overcome waterlogged conditions of open field during heavy rainfall and should be drainage as soon as possible if there are waterlogging.

계절적 몬순에 의한 댐 인공호 및 농업용 저수지에서의 영양상태지수(TSI), 경험적 수질 모델 및 어류 트로픽 구조 (Influence of Seasonal Monsoon on Trophic State Index (TSI), Empirical Water Quality Model, and Fish Trophic Structures in Dam and Agricultural Reservoirs)

  • 윤영진;한정호;안광국
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1321-1332
    • /
    • 2014
  • The key objective of this study was to evaluate trophic state and empirical water quality models along with analysis of fish trophic guilds in relation to water chemistry (N, P). Trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (CHL), ranged between oligotrophic and hypereutrophic state, by the criteria of Nurnberg(1996), and was lower than the trophic state of total nitrogen (TN). Trophic relations of Secchi depth (SD), TN, TP, and CHL were compared using an empirical models of premonsoon (Pr), monsoon (Mo), and postmonsoon (Po). The model analysis indicated that the variation in water transparency of Secchi depth (SD) was largely accounted (p < 0.001, range of $R^2$ : 0.76-0.80) by TP during the seasons of Mo and Po and that the variation of CHL was accounted (p < 0.001, $R^2=0.70$) up to 70% by TP during the Po season. The eutrophication tendency, based on the $TSI_{TP}$ vs. $TSI_{N:P}$ were predictable ($R^2$ ranged 0.85-0.90, p < 0.001), slope and y intercept indicated low seasonal variability. In the mean time, $TSI_{N:P}$ vs. $TSI_{CHL}$ had a monsoon seasonality in relation to values of $TSI_{N:P}$ during the monsoon season due to a dilution of reservoir waters by strong monsoon rainfall. Trophic compositions of reservoir fish reflected ambient contents of TN, TP, and CHL in the reservoir waters. Thus, the proportions of omnivore fish increased with greater trophic conditions of TP, TN and CHL and the proportions of insectivore fish decreased with greater trophic conditions.

경부고속철도 천성산구간 원효터널공사와 늪지와의 상관성 분석 (Analysis of Correlation Between Wonhyo Tunnel(section of KTX line) Works and Swamp)

  • 함동선;김병호;전병규;김인수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1838-1844
    • /
    • 2007
  • The Wonhyo Tunnel on KTX railroad line is a section of latest concerns from domestic environmental NGOs, which focus on potential destruction of ecosystem or the like due to ever-depleted swamp water at about 300m upward from the tunnel under construction. As a result of study, out of all swamps in the vicinity of the tunnel, it was found that Mujechi 1st and 2nd swamps have been getting smaller in their area little by little since 50 years ago primarily under the influence of eroded streams around lower swamp and even ever-increasing annual mean temperature. As the result of monitoring about swamp before work, it was found that swamp water depends absolutely on amount of rainfall. Besides, the results of monitoring during work also didn't show any leakage generated in the tunnel during and after excavation works with regard to a wheat field swamp in the most vicinity of the tunnel (80m away). On the other hand, it was found that the range affected by ground water sink in tunnel section without grouting process amounted to about 100m around the tunnel, which indicates that such ground water sink has no significant impact upon most of swamps near the tunnel. As the result of testing by two well tracer test around swamps, it was noted that swamp water didn't run out from the bottom of swamp even with adjacent ground water level sunk in factitious ways. And the results of physical survey showed that swamp kept saturated even in dry season when ground water level becomes lower than the bottom of swamp. Therefore, even supposing that ground water level becomes sunk due to tunnel works, it is estimated that the water level of swamps would be still kept owing to impervious layer(peat beds).

  • PDF

강변여과수 시설에서의 지열에너지 활용 가능성 평가 (Assessment for geothermal energy utilization in the riverbank filtration facility)

  • 신지연;김경호;배광옥;이강근;정우성;석희준;김형수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2007
  • Riverbank filtration is a kind of artificial aquifer recharge for the fresh water supply. By construction of several production wells penetrating the riverbank, surface water withdrawn from the river would pass riverbed. This extracted water is well known to be cooler than surface water in summer and warmer than surface water in winter, showing more constant water temperature. This characteristic of extracted water is applied to geothermal energy utilization. Prediction of the annual temperature variation of filtrated water is the major concern in this study. In Daesan-myeon, Changwon-si, Gyeongsangnam-do, South Korea, riverbank filtration facility has been on its operation for municipal water supply and thermal energy utilization since 2006. Appropriate hydraulic and thermal properties were estimated for flow and heat transfer modeling with given pumping rate and location. With the calibrated material properties and boundary conditions, we numerically reproduced measured head and temperature variation with acceptable error range. In the numerical simulation, the change of saturation ratio and river stage caused by rainfall was calculated and the resulting variation of thermal capacity and thermal conductivity was considered. Simulated temperature profiles can be used to assess the possible efficiency of geothermal energy utilization using riverbank filtration facility. Influence of pumping rate, pumping location on the extracted water temperature will be studied.

  • PDF

합류식 하수관거 월류수 저장 시설에 대한 효과 - 강우시 합류식 하수관거에서의 오염물질 유출특성 분석 (Effect for CSOs Storage Construction - Analysis of Storm Water Run-off Characteristics in combined sewer system)

  • 박진규;이남훈;김해룡;이웅;이채영
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.949-957
    • /
    • 2011
  • This aim of study was to investigate the characteristics of discharge of pollutants as well as the correlation between flow rate and water quality constituents in a combined sewer system according to the characteristics of rainfall. For the loading rates for each pollutant, the median concentrations of all pollutants except T-N was increased when a CSO took place. The loading rates of BOD, COD, SS, T-N, T-P, Cu and Zn at the CSOs were 328-1255, 25-129, 83-2009, 4-12, 14-51, 5-11 and 5-13 times higher than the DWF (Dry Whether Flow), respectively. Especially, SS loading rate was found to be highest in all pollutants. On the other hand, the range of the first flush coefficient, b for water quality constituents such as BOD, COD, SS, T-N, T-P, Cu and Zn were 0.537-0.878, 0.589-0.888, 0.516-1.062, 0.852-1.031, 0.649-0.954, 0.975-1.015 and 0.900-1.114, respectively. In term of correlation between flow rate and pollutant concentrations, SS concentration was highly correlated to flow rate. However, there was an inverse correlation between EC (Electrical Conductivity) and flow rate because of the high dilution of flow rate. In case of correlation between pollutants, there was a high correlation between SS and T-P.

붉은멍게 Halocynthia aurantium 발생에 관한 수온 및 염분의 영향 (Effects of Temperature and Salinity on Development of Sea Peach Halocynthia aurantium)

  • 이주;박민우;이채성;김수경;김완기
    • 한국환경과학회지
    • /
    • 제18권10호
    • /
    • pp.1171-1179
    • /
    • 2009
  • The solitary ascidian, Halocynthia aurantium, which is commonly called the sea peach because of its coloration and general shape, is a valuable organism of benthic marine population in the northern region of the East Sea, Korea. It is seldom found at a depth of less than 10 meters and the sea peach is frequently observed in large populations between 20 and 100 meters. It appears to prefer attachment to vertical rocks faces and artificial cement blocks exposed to the currents. Mass mortality and reduction of resources in sea peach, H. aurantium, were occurred in the benthic area of the northern region of the East Sea because of the rapid fluctuation of environmental factors such as temperature and salinity due to mass rainfall in summer and going up north of a strong warm current in winter. Therefore, we examined the effects of temperature and salinity on embryonic development of fertilized eggs, tadpole larva to metamorphosis, and attachment to siphon development. Laboratory-raised larvae were studied using a two-factorial experimental design with four levels of temperature(8, 12, 16 and $20^{\circ}C$) and four levels of salinity(20, 25, 30 and 34 psu). The ascidian larvae of H. aurantium survived environmental conditions between temperature of $8{\sim}20^{\circ}C$ and salinity of 25~34 psu and exhibited positive growth at $8{\sim}16^{\circ}C$ and 30~34 psu. Fertilized eggs have not developed at lower salinity of 20 psu irrespective of temperature range tested and have showed an abnormal development at the salinity of 25 psu between higher temperatures of 20 and $24^{\circ}C$. This result suggests that temperature increase and salinity reduction depending on environmental fluctuation may have significant impacts on population variation of H. aurantium in the northern region of the East Sea.

공간정보 기반 산사태 발생지역 예측비율 평가 (The Evaluation on the Prediction Ratio of Landslide Hazard Area based on Geospatial Information)

  • 이근상;이호준;고신영;조기성
    • 지적과 국토정보
    • /
    • 제44권2호
    • /
    • pp.113-124
    • /
    • 2014
  • 최근 집중호우에 의한 산사태 발생이 빈번해짐에 따라 산사태 취약지역을 분석하고 산사태 발생을 예측하기 위한 다양한 연구들이 진행되고 있다. 본 연구에서는 산사태 발생지역의 토양특성을 분석하였으며, 배수 특성별 우도비를 평가한 결과 배수가 좋은 토양에서 산사태 발생 가능성이 높게 나타났다. 또한 DEM 자료에서 추출한 경사도의 우도비를 평가한 결과 $20{\sim}40^{\circ}$ 경사구간에서 산사태 발생 가능성이 높게 나타났다. 그리고 공간분석에 의한 사면방향도의 우도비를 평가한 결과 북향에서 산사태 발생 가능성이 높게 나타났다. 아울러 토양배수, 경사도 그리고 사면방향도의 우도비를 중첩하여 산사태 취약도를 평가할 수 있었으며, 산사태 발생지역에 대하여 분석과 검증 프로세스를 수행함으로써 미래 산사태 발생 예측비율을 평가할 수 있었다.