• 제목/요약/키워드: Rainfall prediction

검색결과 574건 처리시간 0.032초

International Research Trend on Mountainous Sediment-related Disasters Induced by Earthquakes (지진 유발 산지토사재해 관련 국외 연구동향 분석)

  • Lee, Sang-In;Seo, Jung-Il;Kim, Jin-Hak;Ryu, Dong-Seop;Seo, Jun-Pyo;Kim, Dong-Yeob;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • 제106권4호
    • /
    • pp.431-440
    • /
    • 2017
  • The 2016 Gyeongju Earthquake ($M_L$ 5.8) (occurred on September 12, 2016) and the 2017 Pohang Earthquake ($M_L$ 5.4) (occurred on November 15, 2017) caused unprecedented damages in South Korea. It is necessary to establish basic data related to earthquake-induced mountainous sediment-related disasters over worldwide. In this study, we analyzed previous international studies on the earthquake-induced mountainous sediment-related disasters, then classified research areas according to research themes using text-mining and co-word analysis in VOSviewer program, and finally examined spatio-temporal research trends by research area. The result showed that the related-researches have been rapidly increased since 2005, which seems to be affected by recent large-scale earthquakes occurred in China, Taiwan and Japan. In addition, the research area related to mountainous sediment-related disasters induced by earthquakes was classified into four subjects: (i) mechanisms of disaster occurrence; (ii) rainfall parameters controlling disaster occurrence; (iii) prediction of potential disaster area using aerial and satellite photographs; and (iv) disaster risk mapping through the modeling of disaster occurrence. These research areas are considered to have a strong correlation with each other. On the threshold year (i.e., 2012-2013), when cumulative number of research papers was reached 50% of total research papers published since 1987, proportions per unit year of all research areas should increase. Especially, the proportion of the research areas related to prediction of potential disaster area using aerial and satellite photographs is highly increased compared to other three research areas. These trends are responsible for the rapidly increasing research papers with study sites in China, and the research papers examined in Taiwan, Japan, and the United States have also contributed to increases in all research areas. The results are could be used as basic data to present future research direction related to mountainous sediment-related disasters induced by earthquakes in South Korea.

Study on the Interpretation of the Features Affacting to the N-supplying Capability of Field Soils to Corn in Pennsylvania (Pennsylvania주 옥수수재배지(栽培地) 토양(土壤)의 질소공급능력(窒素供給能力)에 영향(影響)을 미치는 요인분석(要因分析))

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제25권1호
    • /
    • pp.26-37
    • /
    • 1992
  • Fifty-five field experiments were conducted in order to find out some useful indices for the prediction of N-supplying capability(NSC) of soils under cultivation of corn in Pennsylvania over 3 years from 1986. Contents of $NO_3-N$, absorbance at 200 nm of the extract from soil with 0.01M $NaHCO_3$ were identified to be used as indices before planting. Methods for the estimation of organic nitrogen available later in the growing season(KCLA-N, PBBA-N, UV260 nm absorbance of $NaHCO_3$ extract) were not to be used as good indices individually, but when those are combined together with inorganic $NO_3-N$ showed a highly significant correlationship with the NSC. The year of an even distribution of rainfall, 1987, gave the highest significant correlationship between NSC and the indices. For soils of the same texture with slightly different physical properties, combined indices obtained from physico-chemical factors improved the degree of predictability when the grades of soil slope, depth of Ap were considered at the same time. More futher researches such as this need to be done before any conclusive result can be drawn.

  • PDF

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • 제29권3호
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

Prediction of Soil Erosion from Agricultural Uplands under Precipitation Change Scenarios (우리나라 강우량 변화 시나리오에 따른 밭토양의 토양 유실량 변화 예측)

  • Kim, Min-Kyeong;Hur, Seong-Oh;Kwon, Soon-Ik;Jung, Goo-Bok;Sonn, Yeon-Kyu;Ha, Sang-Keun;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제43권6호
    • /
    • pp.789-792
    • /
    • 2010
  • Major impacts of climate change expert that soil erosion rate may increase during the $21^{st}$ century. This study was conducted to assess the potential impacts of climate change on soil erosion by water in Korea. The soil loss was estimated for regions with the potential risk of soil erosion on a national scale. For computation, Universal Soil Loss Equation (USLE) with rainfall and runoff erosivity factors (R), cover management factors (C), support practice factors (P) and revised USLE with soil erodibility factors (K) and topographic factors (LS) were used. RUSLE, the revised version of USLE, was modified for Korean conditions and re-evaluate to estimate the national-scale of soil loss based on the digital soil maps for Korea. The change of precipitation for 2010 to 2090s were predicted under A1B scenarios made by National Institute of Meteorological Research in Korea. Future soil loss was predicted based on a change of R factor. As results, the predicted precipitations were increased by 6.7% for 2010 to 2030s, 9.5% for 2040 to 2060s and 190% for 2070 to 2090s, respectively. The total soil loss from uplands in 2005 was estimated approximately $28{\times}10^6$ ton. Total soil losses were estimated as $31{\times}10^6$ ton in 2010 to 2030s, $31{\times}10^6$ ton in 2040 to 2060s and $33{\times}10^6$ ton in 2070 to 2090s, respectively. As precipitation increased by 17% in the end of $21^{st}$ century, the total soil loss was increased by 12.9%. Overall, these results emphasize the significance of precipitation. However, it should be noted that when precipitation becomes insignificant, the results may turn out to be complex due to the large interaction among plant biomass, runoff and erosion. This may cause increase or decrease the overall erosion.